Accessibility Tools

2023-09-11
Research highlights

Carbon Oxide Decomposition as a Novel Technique for Ultrahigh Quality ZnO Nanowire Crystallization

Cryst. Growth Des. 2023, 23, 9, 6442–6449

SEM images of ZnO NWs produced using the COD method on the sapphire (11–20) substrate (a) and the silicon (100) substrate (b). The average length of the NWs is 20–30 μm and the diameter is 50–500 nm. The STEM image of the edge of the ZnO NW seen along the [11–20] direction (c). Blue frames show zoomed-in areas. The low-magnification HR-TEM image of the ZnO NW acquired in diffraction contrast (d, e). A thin ZnO NW presented in HR-TEM with (1–100) and (0002) planes marked as blue and pink lines, respectively (f).

The carbothermal method of nanowire growth has been known and successfully used for a long time to cultivate various types of nanowires. It was commonly believed that in this method, carbon was utilized solely for the reduction of metal oxide, and the formation of nanowires occurred through the oxidation of metal from the gas phase, with external oxygen supplied. Through modifications to this method and by restricting the access of oxygen, we were able to produce nanowires of exceptional structural and optical quality. Furthermore, this technique is much more cost-effective due to the elimination of the need for equipment to transport carrier gases. The half-width of the optical transition of the exciton bound to the donor in the photoluminescence spectrum, determined for a single nanowire, was only 0.5 meV (measurements conducted at the Faculty of Physics, University of Warsaw). Additionally, X-ray diffraction and high-resolution transmission electron microscopy measurements confirm the excellent structural quality of the nanowires obtained. As indicated by thermodynamic calculations based on equilibrium constants and Gibbs free energies (performed at the Institute of Physical Chemistry of the Polish Academy of Sciences), the reduction of zinc oxide by carbon monoxide played a crucial role in the growth process. It is noteworthy that carbon monoxide is a product of the initial stage of the growth process, not supplied from an external source. The chemical processes occurring in our system differed from the commonly accepted reactions responsible for carbothermal growth processes. Moreover, the presented method can be applied to the growth of other nanowires, such as gallium oxide.


Publications

Wiktoria Zajkowska-Pietrzak, Jakub Turczyński, Sławomir Kret, Tomasz Andryszewski, Jan Suffczyński, Anna Reszka, Marcin Stachowicz, Aleksandra Wierzbicka, Krzysztof Fronc, and Henryk Teisseyre

Contact with IF PAN scientists

This email address is being protected from spambots. You need JavaScript enabled to view it.

This email address is being protected from spambots. You need JavaScript enabled to view it.



See more

Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation

Chem. Soc. Rev. 2023, 52 (18), 6497-6553

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the primary etiological agent responsible for the catastrophic global COVID-19 pandemic, as officially declared by the World Health Organization (WHO) in March 2020. This pandemic has infected more than 700 million people and claim...

How soluble misfolded proteins bypass chaperones at the molecular level

Nat. Commun. 2023, 14 (1), 3689

Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always...

Excited-state singlet–triplet inversion in hexagonal aromatic and heteroaromatic compounds

 Phys. Chem. Chem. Phys., 2023, 25, 21875-21882

https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp01666h

Publication selected by Editors as a 2023 HOT PCCP article.

Ab initio computations performed by physicists from IF PAS and Technical University of Munich indicate on existence of a wide class of organic molecules with inverted sequence of the lowest singlet and triplet states. This discovery may have important consequences for construction of a new genera...
Save
Cookies user preferences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Read more
Essential
Essential cookies
These cookies are necessary for the correct operation of the website and therefore cannot be disabled on this level; the use of these cookies does not involve the processing of personal data. While you can disable them via your browser settings, doing so may prevent the website from working normally.
Accept
Analytical cookies
These cookies are particularly intended to enable the website administrator to monitor the website traffic statistics, as well as the sources of traffic. Such data is typically collected anonymously.
Google Analytics
Accept
Decline