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Abstract

The present doctoral dissertation entitled “Dynamics of Entanglement of Spin Qubits
Based on Semiconductor Quantum Dots” is of triptych form: apart from a short pre-
sentation of the scientific knowledge about the spin qubits, entanglement and reasons
of its decay contained in Chapter 1 “Introduction: Entanglement and Spin Qubits”,
and auxiliary chapters such as Chapter 5 “Concluding Part”, and Appendix, it con-
sists of three main parts: Chapter 2 “Dynamics of Decay of Two Electron-Spin Qubits
Entanglement”, Chapter 3 “Retardation of Entanglement Decay of Two Spin Qubits
by Quantum Measurements”, and Chapter 4 “Dynamical Generation of Entangle-
ment of Two Singlet-Triplet Qubits”. All three main parts have a common subject
of study—the decay of entanglement of two qubits based on spins of electrons which
are localized on quantum dots (QDs) in a semiconductor nanostructure (e.g. gated
QDs created in AlGaAs/GaAs heterostructure or self-assembled InGaAs QDs). At
the same time, these chapters contain research pieces which are independent of each
other.

In Chapter 1, I summarize the most important, from the point of view of the sub-
ject of the dissertation, scientific knowledge about the formal description of complex
systems in quantum mechanics, define the entangled states, discuss approaches to
quantification of the level of entanglement of a given quantum state and give explicit
definitions of measures of entanglement used in the following chapters. I also sum
up the information about a few experimental realizations of spin qubits in semicon-
ductor QDs. In particular, I describe the design of a few types of such devices and
the possibilities of electron spin manipulations they provide. I end the chapter with
an overview of physical mechanisms that lead to decoherence of quantum states of
spin qubits.

In Chapter 2, I present the theoretical analysis of the time evolution of two
electron spin QD qubits. It is shown there how entanglement decays due to the
interaction of electron spins with nuclear spin environment of QDs. The impact
of various states of the latter has been considered (e.g. a thermal state, narrowed
states, correlated states). It has also been examined the efficiency of application of
a two-qubit echo procedure in order to revert dephasing of qubits and obtain back
the entangled state of qubits. The existence of a cut-off strength of magnetic field
below which echo procedure gives no effect has been demonstrated. Additionally,
it has been shown that the amount of entanglement of two-qubit state which is
undergoing the hyperfine-induced decay can be detected and quantified without
performing the two-qubit tomography. The amount of entanglement in such a case
can be faithfully estimated by measuring a simple entanglement witness (projection
on the initial two-qubit state). Moreover, this task can also be accomplished by
measuring the averaged fidelity of quantum teleportation during which the analyzed
state is consumed.
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In Chapter 3, I develop further the study of the system of two electron spin QD
qubits, namely, I investigate how one could counteract the decay of their entan-
glement. I show there that execution of a manipulation procedure based on joint
evolution of qubits and their environments followed by quantum measurement of
the qubits’ subsystem may significantly retard the decay of qubits’ entanglement. It
turns out to be crucial to tune the parameters of the procedure (duration τ of free
evolution of the system, number n of performed quantum measurements and their
strength k) to maximize the effect of retardation of entanglement decay. It has been
demonstrated that the effect can be achieved not only in the case of strong (projec-
tive) measurements but also for quantum measurements of moderate strength.

In Chapter 4, I concentrate on the dynamical creation of entangled states of
two two-electron spin QD qubits. Motivated by the experimental realization of
the procedure aimed at production of entangled states of two singlet-triplet (S-T0)
qubits, I analyze the impact of factors which limit the maximal possible amount of
entanglement created in that system operated in a regime when energy associated
with the magnetic field gradient ∆Bz is an order of magnitude smaller than the
exchange energy J between singlet and triplet states. First, I study theoretically a
single S-T0 qubit in free induction (FID) and spin echo (SE) experiments. I have
obtained the analytical expressions for averaged values of the components of S-T0
qubit as functions of the procedure duration for quasistatical fluctuations of ∆Bz and
quasistatical or 1/fβ-type dynamical fluctuations of J . Next, I consider the impact
of fluctuations of these parameters on the efficiency of the entangling procedure.
In particular, I have obtained the analytical expressions for the density operator of
two-qubit state which account for 1/fβ-type fluctuations of J1, J2 and the degree of
correlation of the noises. These expressions indicate the maximal possible level of
entanglement that can be generated by performing the entangling procedure. The
theoretical estimates deliver also an evidence that in the analyzed experiment, S-T0
qubits were affected by uncorrelated 1/fβ charge noises.

Results presented in Chapter 2 are published in the scientific journal Physical
Review B [1], while results contained in Chapters 3 and 4 have not been published
yet.
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Streszczenie 1

Niniejsza rozprawa doktorska pt. „Dynamika splątania kubitów spinowych opartych
na półprzewodnikowych kropkach kwantowych” posiada formę tryptyku: oprócz
streszczenia wiedzy naukowej o kubitach spinowych, splątaniu i przyczynach jego
zaniku, zawartego w rozdziale 1 „Wstęp: Splątanie i kubity spinowe”, i rozdziałów
pomocniczych, takich jak rozdział 5 „Wnioski” i dodatek, składa się ona z trzech
głównych części: rozdziału 2 „Dynamika zaniku splątania dwóch kubitów, zreali-
zowanych na pojedynczych spinach elektronów”, rozdziału 3 „Opóźnianie zaniku
splątania dwóch kubitów spinowych pomiarami kwantowymi” i rozdziału 4 „Dyna-
miczne wytwarzanie splątania dwóch kubitów singletowo-trypletowych”. Wszystkie
trzy główne części mają wspólny przedmiot badań – zanik splątania dwóch ku-
bitów opartych na spinach elektronów, które są zlokalizowane w kropkach kwan-
towych (KK) w półprzewodnikowej nanostrukturze (np. w bramkowanych KK wy-
tworzonych w heterostrukturze AlGaAs/GaAs albo w samorosnących KK z InGaAs).
Jednocześnie badania, przedstawione w tych rozdziałach, są od siebie niezależne.

W rozdziale 1 „Wstęp: Splątanie i kubity spinowe” streszczam najważniejszą,
z punktu widzenia przedmiotu tej rozprawy, wiedzę naukową o formalnym opisie
układów złożonych w mechanice kwantowej, podaję definicję stanów splątanych,
omawiam podejścia do kwantyfikacji poziomu splątania stanu kwantowego i przy-
taczam jawne definicje miar splątania, wykorzystywanych w następnych rozdziałach.
Reasumuję również wiedzę o kilku doświadczalnych realizacjach kubitów spinowych
w półprzewodnikowych KK, zwłaszcza, opisuję konstrukcje kilku typów takich urzą-
dzeń oraz możliwości manipulacji spinem elektronu, które one dają. Rozdział ten
kończę przeglądem mechanizmów fizycznych, które prowadzą do dekoherencji stanów
kwantowych kubitów spinowych.

W rozdziale 2 przedstawiam analizę teoretyczną ewolucji czasowej dwóch ku-
bitów, zrealizowanych na pojedynczych spinach elektronów w KK. Pokazano w nim,
jak zanika splątanie na skutek oddziaływania kubitów z otoczeniem, składającym się
ze spinów jądrowych w KK. Został rozważony wpływ rozmaitych stanów otoczenia
(np. stan wysokotemperaturowy, stany zwężone, stany skorelowane). Zbadana została
również wydajność stosowania procedury echa dwukubitowego, mającej na celu
odwrócenie defazowania kubitów i przywrócenie stanu splątanego kubitów. Zostało
zademonstrowane istnienie granicznej wartości natężenia pola magnetycznego, po-

1 In accordance to art. 13, part 6 of the Act of 14 March 2003 on Scientific Degrees and Scientific
Title as well as on Degrees and Title in Field of Art (pol. ustawa z dnia 14 marca 2003 r. o stopniach
naukowych i tytule naukowym oraz stopniach i tytule w zakresie sztuki), which was in effect at the
moment of initiation of the doctor degree awarding procedure as well as in accordance to art. 187,
part 4 of the Act of 20 July 2018 The Law on Higher Education and Science (pol. ustawa z dnia
20 lipca 2018 r. Prawo o szkolnictwie wyższym i nauce), which has replaced the former and is
currently in force, a dissertation written in a foreign language must containt an abstract in Polish.
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niżej której procedura echa nie daje żadnego efektu. Dodatkowo zostało pokazane,
że splątanie stanu dwukubitowego, który zanika na skutek oddziaływania nadsub-
telnego, może być wykryte i określone ilościowo bez wykonywania tomografii stanu
dwóch kubitów. Ilość splątania w takim przypadku może być wiernie oszacowana
pomiarem prostych świadków splątania (rzut na początkowy stan dwukubitowy).
Ponadto ten cel może również być osiągnięty pomiarem uśrednionej wierności tele-
portacji kwantowej, podczas której badany stan jest zużywany.

W rozdziale 3 rozwijam dalej badanie układu dwóch kubitów, zrealizowanych
na pojedynczych spinach elektronów w KK, mianowicie, badam, jak można prze-
ciwdziałać zanikowi ich splątania. Pokazuję, że wykonanie procedury manipulacji
opartej na wspólnej ewolucji kubitów i ich otoczeń, po której następuje pomiar
kwantowy podukładu kubitów, może znacząco opóźnić zanik splątania kubitów.
Okazuje się, że istotne jest dobranie parametrów tej procedury (czasu trwania τ
swobodnej ewolucji układu, liczby n wykonanych pomiarów kwantowych i ich siły k)
w celu zwiększenia efektu opóźniania zaniku splątania. Zostało zademonstrowane,
iż efekt może zostać osiągnięty nie tylko w przypadku silnych (rzutowych) pomiarów,
ale również dla pomiarów kwantowych o umiarkowanej sile.

W rozdziale 4 skupiam się na dynamicznym wytwarzaniu stanów splątanych
dwóch kubitów, każdy z których jest zrealizowany na stanach spinowych dwóch
elektronów w podwójnej KK. Zmotywowany doświadczalną realizacją procedury,
mającej na celu wytworzenie stanów splątanych kubitów singletowo-trypletowych
(S-T0), analizuję wpływ czynników, które ograniczają maksymalnie możliwą ilość
splątania wytworzonego w tym układzie, działającym w trybie, gdy energia związana
z gradientem pola magnetycznego ∆Bz jest o rząd wielkości mniejsza od energii wy-
miany J pomiędzy singletem a trypletem. Najpierw badam teoretycznie pojedynczy
kubit S-T0 w doświadczeniach swobodnego zaniku indukcji i echa spinowego. Otrzy-
małem wyrażenia analityczne, opisujące jego składowe jako funkcje czasu trwania
procedur dla fluktuacji kwazistatycznych parametru ∆Bz oraz dla fluktuacji kwa-
zistatycznych albo dynamicznych typu 1/fβ parametru J . Następnie rozpatrzyłem
wpływ fluktuacji tych parametrów na wydajność procedury splątującej. Otrzy-
małem zwłaszcza wyrażenia analityczne operatora gęstości stanu dwukubitowego,
które uwzględniają fluktuacje typu 1/fβ parametrów J1, J2 oraz stopień korelacji
tych szumów. Te wyrażenia wyznaczają maksymalnie możliwy poziom splątania,
wytwarzanego w wyniku wykonania rozważanej procedury splątującej. Teoretyczne
oszacowania wskazują na to, że w analizowanym doświadczeniu kubity S-T0 znaj-
dowały się pod wpływem nieskorelowanych szumów ładunkowych typu 1/fβ.

Wyniki przedstawione w rozdziale 2 są opublikowane w czasopiśmie naukowym
Physical Review B [1], natomiast wyniki zawarte w rozdziałach 3 i 4 nie zostały
jeszcze opublikowane.
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Chapter 1

Introduction: Entanglement and
Spin Qubits

In this chapter, I discuss shortly the object of study of this dis-
sertation (semiconductor quantum dots) as well as the subject
of the dissertation (dynamics of entanglement of electron spins
in semiconductor quantum dots) and formulate the main aims.
In particular, I introduce here the notion of quantum states, dis-
cuss entangled quantum states and measures of entanglement.
Next, I describe realizations of electron spin qubits in semicon-
ductor quantum dots (QD) and discuss reasons of decoherence
of their quantum states.

1.1 Entangled States and Measures of Entanglement

In quantum mechanics one obtains predictions about observables (i.e. physical quan-
tities that can, in principle, be measured) by calculating their expectation values
in a given state of a considered physical system using corresponding quantum ope-
rators. The state of the system in quantum framework is a purely theoretical tool
that cannot be accessed directly in experiment. When the state of the system is
known as precisely as the theory allows (i.e. the state is pure), it is described by a
vector, say, |ψ⟩, from the corresponding system’s state space H, which, technically,
is a Hilbert space over the field of complex numbers C, i.e. a complex linear vector
space with inner product.

Vectors of a state space H form the closed set under commutative and associative
addition:

• |α⟩+ |β⟩ ≡ |β⟩+ |α⟩ ∈ H,

• |α⟩+ |β⟩) + |γ⟩ ≡ |α⟩+ (|β⟩+ |γ⟩) ∈ H ,
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where |α⟩, |β⟩, |γ⟩ ∈ H;
as well as under multiplication by a scalar, being any complex number, with the
following properties:

• a(|α⟩+ |β⟩) ≡ a|α⟩+ a|β⟩ ∈ H

• (a+ b)|α⟩ ≡ a|α⟩+ b|α⟩ ∈ H,

• a(b|α⟩) ≡ (ab)|α⟩ ∈ H,

where a, b ∈ C.
There exists in a state space H a null (or zero) vector, |0⟩ ∈ H : ∀ |α⟩, |α⟩+ |0⟩ ≡

|α⟩. Multiplication by the identity vector 1 or a scalar unity does not change any
vector, ∀ |α⟩,1|α⟩ ≡ |α⟩ and 1|α⟩ ≡ |α⟩. Moreover, each vector has a corresponding
negative vector (also called an inverse element), ∀ |α⟩ ∃ |β⟩: |α⟩ + |β⟩ = |0⟩, |β⟩ ≡
(−1)|α⟩.

Inner product, defined as a mapping of two elements of a state space H onto C,
possesses the following properties:

• conjugate symmetric property, ⟨α|β⟩ ≡ (⟨β|α⟩)∗;

• linearity in the second argument, ⟨α|(a|β⟩+ b|γ⟩) ≡ a⟨α|β⟩+ b⟨α|γ⟩;

• positive definite property ⟨a|a⟩ > 0,

• only one specific zero vector |0⟩ has zero norm || |0⟩ || =
√

⟨0|0⟩ = 0, and the
vector’s norm is defined as || |α⟩ || :=

√
⟨α|α⟩, where Dirac’s notation |...⟩ for

vectors is used, ⟨α| is a dual vector for the vector |α⟩, ⟨α| ≡ |α⟩† ≡ (|α⟩T )∗.

As an example, let us consider a physical system that has a countable state space H
of finite dimension, dim H = D < ∞ (such spaces are important for this disserta-
tion). In that space one can choose an orthonormal basis (one from infinitely many
bases existing in that space), i.e. such a set of vectors {|φi⟩, i = 1, 2, ..., D} that: all
vectors from the set are linearly independent, i.e.

∑D
i=1 ai|φi⟩ = 0 only when all coef-

ficients ai = 0; all vectors from the set are normalized and orthogonal to each other,
∀i, j ⟨φi|φj⟩ = δij; and the completeness relation is satisfied,

∑D
i=1 |φi⟩⟨φi| = 1. Any

vector |ψ⟩ of that space can be represented as a combination of the basis vectors:

|ψ⟩ ≡ 1|ψ⟩ =
D∑
i=1

|φi⟩⟨φi|ψ⟩ =
D∑
i=1

ci|φi⟩,

where ci := ⟨φi|ψ⟩ ∈ C. State vectors are normalized, so || |ψ⟩ ||2 = ⟨ψ|ψ⟩ =∑D
i=1 |ci|2 = 1.
The state of a physical system can also be represented by a density operator

(or state operator, or density matrix) ρ̂. Description of a system state with the
help of a state vector |ψ⟩ is equivalent to using a density operator ρ̂ = |ψ⟩⟨ψ|, but
when knowledge about the system’s state is not complete1, then a density operator

1 The incompleteness of knowledge about the system state may originate, for example, from
the method of system preparation/initialization (e.g. at nonzero temperature the state of a single
confined particle being in a thermodynamic equilibrium is a mixture of energy eigenstates according
to its thermal distribution) or from the fact that system of interest is actually entangled with
another one while the state of the joint system is pure, so no pure state can be ascribed to the
system of interest alone.
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formalism is the only possible description of a system, i.e.

ρ̂ =
∑
i

wi|ψi⟩⟨ψi|, (1.1)

where {|ψi⟩} is a nonunique set (or ensemble) of system’s pure states (not necessarily
orthogonal to each other) and wi ∈ (0, 1] is a weight of the state |ψi⟩ in the mixed
state ρ̂, which can be interpreted as a probability that system is in the state |ψi⟩,
so
∑

iwi = 1. Such a state ρ̂ is called a mixed state or ensemble of pure states |ψi⟩.
Every density operator ρ̂ has a spectral decomposition (or eigendecomposition),

ρ̂ =
D∑
i=1

pi|ϕi⟩⟨ϕi|,

where |ϕi⟩ are its eigenvectors and pi ∈ [0, 1] are its eigenvalues, which, as probabi-
lities, add up to unity,

∑D
i=1 pi = 1. Density operator has two important properties:

its trace is equal to one, Tr (ρ̂) =
∑D

i=1 piTr (|ϕi⟩⟨ϕi|) =
∑D

i=1 pi = 1, and den-
sity operator is a nonnegative operator, i.e. for any vector |χ⟩ ∈ H, the following
inequality holds

⟨χ|ρ̂|χ⟩ = ⟨χ|

(
D∑
i=1

pi|ϕi⟩⟨ϕi|

)
|χ⟩ =

D∑
i=1

pi⟨χ|ϕi⟩⟨ϕi|χ⟩ =
D∑
i=1

pi|⟨χ|ϕi⟩|2 ⩾ 0.

The density operators representing pure states are idempotent, i.e. such a density
operator fulfills the relation ρ̂2 = (|ψ⟩⟨ψ|)(|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| = ρ̂. The purity of ρ̂,
which is defined as a trace of ρ̂2, indicates if the state ρ̂ is pure:

Tr
(
ρ̂2
)
= Tr

(( D∑
i=1

pi|ϕi⟩⟨ϕi|
)( D∑

j=1

pj|ϕj⟩⟨ϕj|
))

= Tr

(
D∑

i,j=1

pipj|ϕi⟩⟨ϕj|δij

)

= Tr

(
D∑
i=1

p2i |ϕi⟩⟨ϕi|

)
=

D∑
i=1

p2i ⩽ 1,

where equality is possible only when all but one weights are zero, pi = 1, i.e. in the
case of a pure state ρ̂ = |ϕi⟩⟨ϕi|. From the definition of density operator (Eq. (1.1))
it directly follows that ρ̂ is a Hermitian operator, ρ̂† = ρ̂.

Often when dealing with a complex physical system we are interested in the
state of a particular subsystem (i.e. specified part of a system), called A, whereas
the rest of a system will be denoted by B (for the sake of simplicity of notation a
bipartite system will be considered). The state space of such a system is a tensor
product of state spaces of A and B, HAB = HA ⊗ HB. It is worth noting that
spaces that correspond to the subsystems are themselves legitimate state spaces
with all the properties mentioned above retained. With such a decomposition of
a system space, spaces corresponding to the subsystems are disjoint, so e.g. any
combination of vectors from a given space is a vector that belongs to the same
space, ∀ |ψX

1 ⟩, |ψX
2 ⟩ ∈ HX and ∀ a, b ∈ C, a|ψX

1 ⟩ + b|ψX
2 ⟩ = |ψX

3 ⟩ ∈ HX , X = A,B.
Taking into account the structure of a physical system, the system’s density operator
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can be rewritten as follows

ρ̂AB =
∑
i

pi|ψAB
i ⟩⟨ψAB

i | =
∑
i

pi1
AB|ψAB

i ⟩⟨ψAB
i |1AB

=
∑
i

pi1
A ⊗ 1B|ψAB

i ⟩⟨ψAB
i |1A ⊗ 1B

=
∑
i

pi

( dim HA∑
a=1

|φA
a ⟩⟨φA

a |
)
⊗
( dim HB∑

b=1

|χB
b ⟩⟨χB

b |
)
|ψAB

i ⟩

× ⟨ψAB
i |
( dim HA∑

c=1

|φA
c ⟩⟨φA

c |
)
⊗
( dim HB∑

d=1

|χB
d ⟩⟨χB

d |
)

=
∑
i

pi
∑
abcd

gabi g
∗
cdi|φA

a ⟩ ⊗ |χB
b ⟩⟨φA

c | ⊗ ⟨χB
d |

=
∑
i

pi
∑
abcd

gabi g
∗
cdi|φA

a ⟩⟨φA
c | ⊗ |χB

b ⟩⟨χB
d |,

where gabi :=
(
⟨φA

a | ⊗ ⟨χB
b |
)
|ψAB

i ⟩ and {|φA
a ⟩}, {|χB

b ⟩} are some bases in the corres-
ponding subspaces.

The density operator of the subsystem is obtained from the density operator of
the system by tracing out all other subsystems, e.g. the state of subsystem A of the
bipartite system AB is obtained by tracing out the subsystem B as follows

ρ̂A = TrB
(
ρ̂AB

)
=
∑
l

⟨χB
l |ρ̂AB|χB

l ⟩

=
∑
i

pi
∑
abcdl

gabi g
∗
cdi|φA

a ⟩⟨φA
c |⟨χB

l |χB
b ⟩⟨χB

d |χB
l ⟩

=
∑
i

pi
∑
abcd

gabi g
∗
cdi|φA

a ⟩⟨φA
c |δbd

=
∑
i

pi
∑
abc

gabi g
∗
cbi|φA

a ⟩⟨φA
c |.

Obviously, a physical system may consist of a larger number n of subsystems
and correspondingly its state space is equivalent to the tensor (or direct) product of
n subsystems’ spaces.

While considering pure states of a composite system (in other words, such states
that can be expressed as a vector, or a density operator with a single term in its
decomposition with w1 = 1) one can notice that there exist states of separable form
(i.e. the system’s state can be expressed as a tensor product of subsystems’ states,
|ψAB⟩ = |ψA⟩ ⊗ |ψB⟩) and there are also pure states that cannot be expressed in
such a form. A pure state that is not separable one is called an entangled pure
state. Schmidt decomposition of a given pure state helps to determine if that state
is entangled or not. To illustrate this, let us consider a pure state of bipartite
system AB, |ψAB⟩ ∈ HAB = HA ⊗ HB, dim HA = dim HB = D. There exist
orthonormal (Schmidt) bases {|χA

i ⟩}, {|χB
i ⟩} in state spaces HA, HB such that

allow the following decomposition of any pure state |ψAB⟩:

|ψAB⟩ =
D∑
i=1

ci|χA
i ⟩ ⊗ |χB

i ⟩,
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where 0 ⩽ ci ∈ R are called Schmidt coefficients and
∑D

i=1 c
2
i = 1. Schmidt bases

and coefficients are obtained as follows. The vector |ψAB⟩ can be represented in
a standard way |ψAB⟩ =

∑D
a,b=1 gab|φA

a ⟩ ⊗ |φB
b ⟩. The matrix g = (gab) can be

represented using singular value decomposition as g = udv, where d is a diago-
nal matrix with nonnegative elements, whereas u and v are unitary matrices, so
|ψAB⟩ =

∑D
a,i,b=1 = uaidiivib|φA

a ⟩ ⊗ |φB
b ⟩, and hence, one can rewrite the vector

|ψAB⟩ in Schmidt bases that are defined as follows: |χA
i ⟩ :=

∑D
a=1 uai|φA

a ⟩, |χB
i ⟩ :=∑D

b=1 vib|φB
b ⟩, using Schmidt coefficients that are elements of the diagonal matrix d:

ci := dii, |ψAB⟩ =
∑D

i=1 ci|χA
i ⟩ ⊗ |χB

i ⟩. The Schmidt bases {|χA
i ⟩}, {|χB

i ⟩} are or-
thonormal as a consequence of orthonormality of the original bases {|φA

i ⟩}, {|φB
i ⟩}

and unitarity of matrices u and v, u†u = uu† = 1, v†v = vv† = 1, e.g. ⟨χA
i |χA

j ⟩ =
(
∑D

a=1 u
∗
ai⟨φA

a |)(
∑D

b=1 ubj|φA
b ⟩) =

∑D
a,b=1 u

∗
aiubj⟨φA

a |φA
b ⟩ =

∑D
a=1 u

∗
aiuaj = δij.

The number of nonzero coefficients ci in Schmidt decomposition of |ψAB⟩ is
called the Schmidt number for the state |ψAB⟩. Schmidt number is invariant under
unitary transformations of any subsystem, e.g. ÛA⊗ ÛB|ψAB⟩ =

∑D
i=1 ci(Û

A|χA
i ⟩)⊗

(ÛB|χB
i ⟩), where ÛA, ÛB are unitary operators in state spaces HA, HB, respectively,

and because of that it is a reliable indicator of entanglement of the state: |ψAB⟩ is a
product state if and only if its Schmidt number is equal to one, and, correspondingly,
the state |ψAB⟩ is entangled if and only if its Schmidt number is greater that one.
It is worth stressing that state |ψAB⟩ is maximally entangled when moduli of all
nonvanishing Schmidt coefficients are equal to each other.

A few important observations can be made using Schmidt decomposition, na-
mely: if the system is in a pure state |ψAB⟩, then the reduced density operators
of subsystems, ρ̂A and ρ̂B, have the same eigenvalues, which follows from direct
calculation of the reduced density operators

ρ̂A = TrB
(
|ψAB⟩⟨ψAB|

)
= TrB

((
D∑
i=1

ci|χA
i ⟩ ⊗ |χB

i ⟩

)(
D∑
j=1

c∗j⟨χA
j | ⊗ ⟨χB

j |

))

=
D∑
i=1

c2i |χA
i ⟩⟨χA

i |,

and similarly ρ̂B = TrA
(
|ψAB⟩⟨ψAB|

)
=
∑D

i=1 c
2
i |χB

i ⟩⟨χB
i |; the system state |ψAB⟩ is

a pure product state if and only if the reduced density operators, ρ̂A and ρ̂B, are pure
states; if the system state |ψAB⟩ is a maximally entangled state, then reduced density
matrices are proportional to the identity matrices in the subspaces spanned by the
Schmidt basis vectors belonging to the nonvanishing Schmidt coefficients [2, 3].

Here it is worth to mention the possibility to theoretically purify a quantum state:
when state of the system is mixed, ρ̂A ∈ HA (a space of density operators associated
with HA), one can suppose that considered system is a part of a larger hypothetical
system which has the second part of the same state space HB ∼ HA, and in the
joint system space HAB = HA ⊗ HB there exists a pure state |ψAB⟩ such that
ρ̂A ≡ TrB(|ψAB⟩⟨ψAB|). Pure state |ψAB⟩ has the form of Schmidt decomposition:

|ψAB⟩ :=
D∑
i=1

√
pi|ϕA

i ⟩ ⊗ |ϕB
i ⟩,
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where pi are the coefficients from ensemble representation of the density operator
ρ̂A =

∑D
i=1 pi|ϕA

i ⟩⟨ϕA
i | and {|ϕA

i ⟩} is an orthonormal basis in state spaces HA, HB.
In general case, a separable mixed state is defined as a convex combination of

product states [4]

ρ̂AB =
∑
i

piρ̂
A
i ⊗ ρ̂Bi . (1.2)

Any state described by Eq. (1.2) is also called a classically correlated state, because,
in contrast to an explicitly separable state ρ̂AB

sep = ρ̂A ⊗ ρ̂B, the expectation values
of observables measured at the same instant on both subsystems do not factorize,
Tr
(
ρ̂AB ÔA ⊗ ÔB

)
̸= Tr

(
ρ̂A ÔA

)
Tr
(
ρ̂B ÔB

)
, but these correlations of expectation

values are of classical nature, since they can be created by simultaneous local mani-
pulations on each subsystem applied with taking into account possibility of classical
communication of information about each subsystem [5, 6, 7]. Any state that cannot
be described by Eq. (1.2) is an entangled state.

The simplest physical system that can be in an entangled state is that consisting
of two qubits. A qubit (or quantum bit), in turn, is the simplest physical system
that can carry quantum information. It is a two-level system, i.e. its pure state |ψq⟩
is a superposition of two states which are supposed to constitute an orthonormal
basis of qubit’s state space and usually are denoted as |↑⟩, |↓⟩:

|ψq⟩ = a|↑⟩+ b|↓⟩,

where coefficients a, b ∈ C are tied by the normalization condition |a|2 + |b|2 = 1.
Qubit is recognized as a unit of quantum information [8], whereas a maximally
entangled two-qubit state is a unit of bipartite entanglement (ebit) [9].

It is worth to mention that qubit state space has a geometrical interpretation
called the Bloch sphere (in fact, it is a unit ball) that arises from the representation
of qubit density operator ρ̂q in the basis of four orthogonal matrices {ζ̂m := 1√

2
σ̂m},

Tr
(
ζ̂mζ̂n

)
= δmn, where σ̂0 := 1 = | ↑⟩⟨↑ | + | ↓⟩⟨↓ | and the remaining σ̂1 :=

|↑⟩⟨↓|+ |↓⟩⟨↑|, σ̂2 := i(|↓⟩⟨↑| − |↑⟩⟨↓|), σ̂3 := |↑⟩⟨↑| − |↓⟩⟨↓| are the Pauli matrices:

ρ̂q =
3∑

m=0

cmζ̂m,

where cm := Tr
(
ρ̂qζ̂m

)
∈ R, coefficient c0 is constant as a consequence of unity

trace of the density operator, c0 = Tr
(
ρ̂q

1√
2
1
)
≡ 1√

2
. It is convenient to rewrite the

representation as

ρ̂q =
1

2
(1+ r1σ̂1 + r2σ̂2 + r3σ̂3) ≡

1

2
(1+ rrr · σσσ) ≡ 1

2

(
1 + r3 r1 − ir2
r1 + ir2 1− r3

)
, (1.3)

where rm := Tr (ρ̂qσ̂m) ≡
√
2cm, r0 ≡ 1, r1 = ρ12+ρ21, r2 = i(ρ12−ρ21), r3 = ρ11−ρ22,

and rrr := (r1, r2, r3) is the Bloch vector, σσσ := (σ̂1, σ̂2, σ̂3). Equation (1.3) shows that

any state of the two-level system, ρ̂q =
(
ρ11 ρ12
ρ21 ρ22

)
can be represented as a point in
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three-dimensional (3D) space specified by the vector rrr using the relations:

ρ11 = 1− ρ22 =
1

2
(1 + r3),

ρ12 = ρ∗21 =
1

2
(r1 − ir2),

ρ21 = ρ∗12 =
1

2
(r1 + ir2),

ρ22 = 1− ρ11 =
1

2
(1− r3).

The components rm of a Bloch vector are bounded, rm ∈ [−1, 1], since the density
operator is nonnegative, det(ρ̂q) = 1

4
(1− rrr 2) ⩾ 0 ⇒ |rrr| ⩽ 1, so a point defined by rrr

falls into a 3D unit ball. Qubit, the two-level quantum system, is isomorphic to a
spin 1

2
, so, in such a light, components r1, r2, r3 may be interpreted as projections

(or expectation values) of spin (qubit state) on particular 3D space directions, x, y,
z. The limiting case det(ρ̂q) = 0 ⇒ |rrr| = 1 (a unit sphere), i.e. when the density
operator ρ̂q has the eigenvalues2 of 0 and 1, corresponds to a pure state ρ̂q = |ψ⟩⟨ψ|.
As a point on a unit sphere, a pure qubit state |ψ⟩ can be parameterized with angles
of the spherical coordinate system:

|ψ⟩ = |ψ(θ, φ)⟩ = e−iφ/2 cos
θ

2
|↑⟩+ eiφ/2 sin

θ

2
|↓⟩ =

(
e−iφ/2 cos θ

2

eiφ/2 sin θ
2

)
,

where θ ∈ [0, π] is the polar (or inclination) angle and φ ∈ [−π, π) is the azimuthal
angle of a given point. These angles,

θ = 2arccos (|a|) ,

φ = arccos (Re q) sgn (Im q) , where q :=
b

|b|
/
a

|a|
,

are related uniquely to the components of Bloch vector rrr of a pure qubit state:
rm = ⟨ψ|σ̂m|ψ⟩,

r1 = cosφ sin θ,

r2 = sinφ sin θ,

r3 = cos θ.

The analysis of single-qubit and two-qubit states and their evolutions under uni-
tary transformations induced by a given Hamiltonian is of particular importance
due to the fact proved in theory of quantum circuits that any unitary transforma-
tion (i.e. a quantum gate) of a high-dimensional quantum state can be decomposed
into a product of single-qubit and two-qubit quantum gates, and that any quan-
tum circuit (i.e. a sequence of quantum gates followed by quantum measurements)
can be approximated using the standard set of single-qubit and two-qubit gates
(e.g. Hadamard, phase, π/8 and CNOT gates) [3, 10].

2 The characteristic equation λ2 − λ + ρ11ρ22 − ρ12ρ21 = 0 has roots λ1,2 =
1±

√
1−4(ρ11ρ22−ρ12ρ21)

2 = 1±1
2 , when ρ11ρ22 − ρ12ρ21 = 1− rrr 2 = 0.
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The simplest examples of maximally entangled states are states of a system of
two qubits, such as Bell states,

|Φ±⟩ :=
1√
2
(|↑↑⟩ ± |↓↓⟩) ,

|Ψ±⟩ :=
1√
2
(|↑↓⟩ ± |↓↑⟩) ,

whereas Werner state [4, 11, 12, 6, 7] is an example of partially entangled state for
p ∈ [1

3
, 1)

ρ̂W :=
1− p

4
1+ p|Ψ−⟩⟨Ψ−|.

Entangled states possess a counter-intuitive property, which is best seen in the
case of pure maximally entangled states of multiqubit system of the form 1√

2
(|↑⟩⊗D+

eiξ|↓⟩⊗D), where ξ is some relative phase between components of the state: while the
system state is precisely known, the states of individual qubits are maximally mixed
(i.e. of the least information content about particular subsystem) and at the same
time subsystems are strongly correlated, even when they do not interact directly
with each other. This property has been explicitly pointed out in Ref. [13] and
has been well formulated by E. Schrödinger [14, 15, 16, 17]: “Maximal knowledge
of a total system does not necessarily include total knowledge of all its parts, not
even when these are fully separated from each other and at the moment are not
influencing each other at all.”

During time evolution of a complex physical system, its parts become correlated
due to interactions between them. If one is interested in the state of the specific
subsystem (denoted by A), then one should trace the system’s state over the rest
of the system (denoted by B), which in such a case is often called an environment
of a considered subsystem (usually environment is large compared to the system of
interest, i.e. it has a large number of degrees of freedom and is beyond of direct
control of experimentalists). In the course of time evolution of the complex system
the interaction between subsystem A and its environment B leads to singling out
of the pointer basis in the state space of A (which usually is the basis of energy
eigenstates, but not in every system [18]) and to reduction of coherences between
these basis states [19].

The effect of decoherence is clearly seen in the canonical example [2, 20], when
interaction is of the form Ĥint =

∑
n |n⟩⟨n| ⊗ B̂n, where B̂n are some environment’s

operators, as every observable they are Hermitian, B̂n = B̂†
n. Such an interaction

Hamiltonian causes a pure dephasing of the subsystem’s A state ρ̂A. The Hamilto-
nian of a complex system AB has the form

ĤAB = ĤA ⊗ 1B + 1A ⊗ ĤB + Ĥint = Ĥ0 + Ĥint, (1.4)

where ĤA and ĤB are Hamiltonians describing subsystems A and B, respectively.
The interaction Hamiltonian singles out a certain basis in state spaces of subsystem
A, {|n⟩}. Additionally, here it is assumed that ĤA commutes with Ân = |n⟩⟨n|,
which also means that [ĤAB, Ân] = 0, so the mean energy of the subsystem A is
constant, d

dt
⟨ĤA(t)⟩ = 0.

In the interaction picture, the interaction part of the Hamiltonian Eq. (1.4) reads

Ĥint(t) = exp
(
iĤ0t

)
Ĥint exp

(
−iĤ0t

)
=
∑
n

|n⟩⟨n| ⊗ B̂n(t),
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where B̂n(t) := exp
(
iĤ0t

)
B̂n exp

(
−iĤ0t

)
. The operator of time evolution is given

by

Û(t) := T exp

−i
t∫

0

dτĤint(τ)

 = T exp

−i
t∫

0

dτ
∑
n

|n⟩⟨n| ⊗ B̂n(τ)

 ,

where symbol T denotes the time ordering of operators Ĥint(τ) in the series hidden
under the symbol of exp(...). Therefore, the initial state, which at t = 0 is supposed
to be a tensor product of superposed pure state of subsystem A and some pure state
of subsystem B, |ψAB(0)⟩ =

∑
n cn|n⟩ ⊗ |ϕ⟩, becomes at further instance t

|ψAB(t)⟩ = Û(t)|ψAB(0)⟩ =
∑
n

cn|n⟩ ⊗ |ϕn(t)⟩,

where

|ϕn(t)⟩ = T exp

−i
t∫

0

dτB̂n(τ)

 |ϕ⟩ = V̂n(t)|ϕ⟩,

V̂n(t) := T exp

−i
t∫

0

dτB̂n(τ)

 ,

due to the fact that basis states |n⟩ are not affected by the dynamics governed by
the interaction Hamiltonian. As can explicitly be seen, |ψAB(t)⟩ is a superposition
of product states of subsystems, i.e. the system’s state becomes an entangled one
with respect to subsystems A and B. The evolved state of subsystem A is

ρ̂A(t) = TrB
(
ρ̂AB

)
= TrB

(
|ψAB⟩⟨ψAB|

)
= TrB

(∑
n

cn|n⟩ ⊗ |ϕn(t)⟩
∑
m

c∗m⟨m| ⊗ ⟨ϕm(t)|
)

= TrB

(∑
n

cn|n⟩ ⊗ V̂n(t)|ϕ⟩
∑
m

c∗m⟨m| ⊗ V̂ ∗
m(t)⟨ϕ|

)
=
∑
n,m

cnc
∗
m|n⟩⟨m|V̂n(t)V̂ ∗

m(t) =
∑
n,m

cnc
∗
m|n⟩⟨m|⟨ϕm(t)|ϕn(t)⟩.

The diagonal elements of ρ̂A(t) are time-independent (⟨ϕn(t)|ϕn(t)⟩ = 1), while
the off-diagonal elements evolve in time: their moduli decrease as overlap between
evolved states of environment |⟨ϕm(t)|ϕn(t)⟩|, which depends on the exact form of
interaction Hamiltonian and its parameters as well as on the chosen initial state.
In most cases, interaction between subsystems leads to irreversible dynamics of
ρ̂A(t) and to a fast decay of the overlap between distinct environmental states,
|⟨ϕm(t)|ϕn(t)⟩|, n ̸= m. At long times, i.e. t ≫ tdecoh, where tdecoh is a time scale
of decoherence, ⟨ϕm(t)|ϕn(t)⟩ ≈ δnm, and thus the subsystem A is in an incoherent
state in basis {|n⟩}, ρ̂A(t≫ tdecoh) ≈

∑
n |cn|2|n⟩⟨n|.

The same reasoning applies in the case when initial state of environment is
mixed, i.e. when the system’s initial state is of the form ρ̂AB(0) = |ψA(0)⟩⟨ψA(0)| ⊗
ρ̂B(0), where |ψA(0)⟩ =

∑
n cn|n⟩ is an initial state of subsystem A and ρ̂B(0)

is an initial state of environment. The system state evolves as follows ρ̂AB(t) =
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Û(t)ρ̂AB(0)Û †(t) =
∑

n,m cnc
∗
m|n⟩⟨m| ⊗ V̂n(t)ρ̂

B(0)V̂ †
m(t), and the reduced state of

the subsystem A is

ρ̂A(t) = TrB(ρ̂
AB(t)) =

∑
n,m

cnc
∗
m|n⟩⟨m| Tr(V̂n(t)ρ̂B(0)V̂ †

m(t))

=
∑
n,m

cnc
∗
m|n⟩⟨m| Tr(V̂ −1

m (t)V̂n(t)ρ̂
B(0)),

from which one can see that coherence moduli decay as Tr(V̂ −1
m (t)V̂n(t)ρ̂

B(0)).
While considering entanglement of quantum states as a resource, one naturally

needs to quantify the amount of entanglement contained in a given quantum state.
It turned out that the problem of quantifying of entanglement of mixed states is
quite complex (in fact, even checking if a given mixed quantum state is entangled is
a nontrivial task itself) [6, 7]. There exist a few different approaches to this problem
[6, 7]: one can use operational measures of entanglement that make use of the fact
that entanglement is a physical resource which can be spent during execution of a
certain task the efficiency of which depends on the amount of entanglement contained
in the state (e.g. fidelity of teleportation during which analyzed state has been spent
is a function of entanglement amount of that state); it is also possible to define
axiomatic measures of entanglement, which must satisfy some reasonable conditions
that are in accordance with the essence of entanglement, like monotonicity under
local operations and classical communication, which originates from the fact that
entanglement cannot be produced by local operations possibly backed by classical
communication (concurrence is an example of measure of that kind) [5]; besides this,
one can also adopt a geometrical approach to entanglement quantification, in which
entanglement is estimated through the distance between the considered state and
the closest separable state, i.e. the estimate of entanglement amount is derived from
the geometrical structure of the space of density operators (e.g. relative entropy of
entanglement).

Since the dissertation is focused on the two-qubit states, their entanglement will
be quantified by one of the most commonly used measures for two-qubit states, which
is concurrence [21], C(ρ̂) ∈ [0, 1] (where C = 0 means that the state is separable,
and C = 1 means that the state is maximally entangled). Concurrence is given by

C(ρ̂) := max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4),

where λ1 ⩾ λ2 ⩾ λ3 ⩾ λ4 are eigenvalues of the matrix ρ̂ (σ̂y ⊗ σ̂y) ρ̂
∗ (σ̂y ⊗ σ̂y), σ̂y

is the Pauli matrix, and ρ̂∗ is the complex conjugate of ρ̂. For the two-qubit states
of X form (e.g. the Bell states or the Werner state), there exists a simplified way to
calculate the concurrence [22]

C(ρ̂) = 2max(0, |ρ14| −
√
ρ22ρ33, |ρ23| −

√
ρ11ρ44), (1.5)

where ρij are the density operator elements (in the standard |σAσB⟩ basis) of ρ̂(t).
Concurrence can be easily calculated for a pure two-qubit state |ψ⟩,

C(|ψ⟩) = |⟨ψ|σ̂y ⊗ σ̂y|ψ∗⟩|,

where the vector |ψ∗⟩ is the complex conjugate of |ψ⟩.
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Another convenient measure of bipartite entanglement is negativity [23], which
is based on the Peres-Horodecki criterion [24, 25]: if a density operator partially
transposed with respect to some subsystem is negative, then such a state neces-
sarily possesses entanglement between the subsystem and the rest of the system.
Negativity is defined as

N(ρ̂AB) :=
1

2

(
||ρ̂TA

AB|| − 1
)
,

where

ρ̂TA
AB :=

(∑
αβγδ

ραβ,γδ|α⟩A ⊗ |β⟩BA⟨γ| ⊗ B⟨δ|
)TA

=
∑
αβγδ

ραβ,γδ|γβ⟩⟨αδ|

is a partially transposed density operator with respect to the subsystem A, and the
norm of a matrix M is defined as ||M || = Tr

(√
M †M

)
(in the case of a density

operator this norm is equal to the sum of moduli of its eigenvalues). Although
negativity fails to detect entanglement for some states when the dimension of the
state space is greater than 2×3, it is widely used because it is applicable to systems
of any size and is relatively easy to calculate, unlike most of the entanglement
measures for mixed states (e.g. entanglement of formation), which usually involve
optimization over a set of density operators (that is impossible to perform in practice
even for systems of moderate size due to exponential growth of size of system’s state
space).

Lastly, it is worth noting that in the framework of quantum mechanics, entangled
state can be created in two fundamentally different ways. One way is deterministic
creation of an entangled state starting from the separable one in course of joint evo-
lution of a few subsystems that appropriately interact with each other. For example,
an entangled state of two qubits is generated when their interaction is described by
Ising-like Hamiltonian Ĥint =

ℏ
4
J(σ̂z + 1̂)⊗ (σ̂z + 1̂) (see Chapter 4). Another way

of entanglement production is execution of the projective measurement in a basis of
the system’s entangled states3. The outcome of such a measurement will necessarily
be one of the basis states. As long as measurement problem in quantum mechanics
is not solved this method of entanglement production has its formal foundation in
the measurement postulate (post-measurement state-update rule and Born’s rule)
[26, 27], which skips the physical mechanism of that process as well as its dynamics
and only assigns probabilities to the particular outcomes. Certainly, during execu-
tion of the projective measurement that is aimed at entanglement production, all
subsystems of a measured quantum system must interact simultaneously with the
measuring apparatus, so it can be reasonably presumed that such a measurement in-
duces a strong interaction through the apparatus between the subsystems. Thus, in
one way or another both methods of entanglement production are based on forcing
subsystems to interact with each other, with the only difference whether the final
desired entangled state is obtained in a deterministic way or randomly with some
probability.

It is interesting enough that, although some counter-intuitive features of quan-
tum states have been noticed and discussed shortly after the formulation of quantum
mechanics [13, 28, 14, 15, 16, 17], conceptualization of quantum information and un-
derstanding the fact that quantum correlations contained in quantum states are a

3A certain role of the quantum measurement checking if two-qubit state is the entangled one
is studied in Chapter 3.
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unique resource, which can be used for useful applications otherwise impossible,
took decades, resulting in forming of a wide branch of quantum science. Several
milestones on that path are worth mentioning such as derivation of Bell’s inequal-
ities [29], establishing a limit on a conversion of information from quantum rep-
resentation to the classical one (Holevo’s theorem) [30], first suggestions for using
quantum systems for computing [31, 32], discovery of the principle of superdense
coding [33] and quantum teleportation [34], and invention of quantum algorithms
[35, 36] which show explicitly advantages of quantum computations over classical
counterparts. In contrast to difficulties which one encounters in any attempt to de-
fine classical information, the definition of quantum information is strikingly simple
and sharp: it is the state of a quantum system of interest, which can be described
in terms of classical information by a state vector (if the state is pure) or a density
operator in a chosen basis of the system’s state space (i.e. the set of corresponding
coefficients or the set of density operator elements). To be useful for potential ap-
plications, quantum information should be contained in a physical system that is
clearly defined and is suited for performing desired manipulations with it (quantum
logic gates, quantum measurements, etc.). Unlike classical information, that can be
written in different substrates without any loss or change of its content, quantum
information cannot be considered without explicit description of the state space of
the system which is chosen to carry that information. The nature of quantum infor-
mation determines a fundamentally different approach to its processing. A series of
no-go theorems, which stress the peculiarities of quantum information in comparison
to classical information, has been discovered: no-cloning theorem (impossibility to
create identical copy of an arbitrary unknown quantum state) [37, 38, 39, 40], no-
deleting theorem (impossibility to delete one of the identical copies of some arbitrary
quantum state, a time-reversed partner of the no-cloning theorem) [41], no-broadcast
theorem (impossibility to create two copies of an unknown quantum state, a corol-
lary of the no-cloning theorem) [42], no-hiding theorem (loss of quantum information
of the system is always accompanied by transfer of that information to the environ-
ment, quantum information cannot disappear from a closed quantum system, and
no information is contained in the correlations between the decohered system and
its environment) [43], no-teleportation theorem (impossibility to convert a quan-
tum state to classical information that fully describes it by performing a quantum
measurement4 on a single copy of that state) [44], no-communication (impossibi-
lity to communicate instantly the information by measuring entangled states) [45],
no-programming theorem (impossibility of existence of a universal programmable
quantum processor) [46].

4 One can deduce the quantum state of the system only by performing a number of quantum
measurements executed on a physical system being each time in the same quantum state and esti-
mating the probabilities of outcomes. The result of a single quantum measurement gives, in fact,
no information about the quantum state in which the system was just before the measurement—it
only informs us in what state the system happened to be right after the execution of that measure-
ment and that the measured state certainly has been a component of the ensemble representation
of the state in which system was just before the measurement.
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1.2 Quantum Dot Spin Qubits
In the last few decades, various physical systems have been considered as a physical
realization of quantum-information concepts. Among others, qubits based on locali-
zed electron spins in semiconductor nanostructures have been investigated in depth,
both theoretically and experimentally, for their possible use as building blocks of a
quantum computer. Several different types of such qubits have been mastered, such
as spin qubits based on gated quantum dots (QDs) in AlGaAs/GaAs [47, 48, 49]
or Si nanostructure [50, 51, 52, 53], self-assembled QDs [54, 55], nitrogen-vacancy
(NV) centers in diamond [56], and electrons bound to phosphorous donors in sili-
con [57]. In particular, advances in controlling the coupling between two spin qubits
[58, 59, 60, 61, 62, 63, 64, 65] have led to demonstration of creation and manipulation
of entangled states of two electron spin-based qubits [66, 67].

By the end of 1990s several kinds of semiconductor QD devices which are able
to fully confine (i.e. in all three spatial dimensions) a single electron [68] and allow
to perform some manipulations with it as well as measurements of its state were
mastered. The following types of QDs deserve a mention here, since such systems
are the object of studies presented in the following chapters.

1.2.1 Gated lateral quantum dots

Electrically defined gated lateral QDs [47] are created in AlGaAs/GaAs heterostruc-
ture grown by molecular-beam epitaxy. By doping AlGaAs layer with Si one in-
troduces additional conduction band electrons to the heterostructure. Due to the
conduction band mismatch at the interface between GaAs and AlGaAs a triangular
quantum well5 is formed there, which confines electrons in a plane perpendicular to
the growth direction (usually called z direction) of the heterostructure. As a result,
two-dimensional electron gas (2DEG) appears inside the structure at the interface,
which is circa 50 ÷ 100 nm below the surface of AlGaAs layer. The width of that
2DEG is6 about 10 ÷ 20 nm. The confinement of electrons from 2DEG in lateral
QDs is completed in the xy plane by electrostatic potential produced by negatively
charged metallic electrodes fabricated on the surface of AlGaAs layer. Typically,
electrodes which form a QD have a rounded shape and circle an area about a hun-
dred nm in diameter. Inside this area, a small number of electrons from 2DEG
can be localized, as a potential barrier in the xy plane is created by electric field
originated from the electrodes. Fine tuning of the electrostatic potential inside the
QD is performed with the help of the gate electrode: by varying the voltage on the
gate, one can control the number of electrons in the QD in a precise way. The device
is usually equipped with a quantum point contact (QPC) nearby the QD, which is
used to determine the number of electrons in the QD. The conductance of QPC is
sensitive to charges in its surroundings, so it can clearly detect a transition of a

5 The depth of the triangular quantum well of a AlxGa1−xAs/GaAs heterostructure is limited
from above by the discontinuity of the bottom of conduction band on the interface ∆Ec, which is
determined by Al mole fraction x and is about 365 meV at most for x = 0.45 [69]. Typically, for
gated lateral QDs one uses a heterostructure with x = 0.3 [61], which has ∆Ec ≈ 243 meV.

6 Width Wz of the quantum well formed on the interface between AlGaAs and GaAs can
be estimated using the formula [70, 71, 72]: Wz = 2

3
√

1012 cm−2

n · 5.5 nm, where n is 2D electron
density at AlGaAs/GaAs interface, which typically is about n ≈ (1÷5) ·1011 cm−2 [47], so it gives
Wz ≈ 10÷ 20 nm.
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single electron into or out of the QD. To make the described device operational, it is
required to cool it down to low enough temperature, typically about tens mK. This
requirement is dictated by the need to keep the confined electrons in their ground
state orbitals: at typical operating temperature T = 20 mK the thermal energy
kBT ≈ 2 µeV, which is much less than the energy difference between the ground
orbital and the lowest excited one7, ∆Eorb. Low temperatures also help to suppress
one of the mechanisms of decoherence of electron spin state, namely, that one which
is induced by interaction with phonons.

1.2.2 Single electron spin qubit in a gated quantum dot

The idea to use spin of an electron confined in a semiconductor QD as a qubit was
explicitly formulated in Ref. [73] (the Loss–DiVincenzo proposal) bearing in mind
a gated lateral QD device. Electron spin, which magnitude is ℏ

2
, has two basis

states, therefore, it is a natural qubit. Electron spin states becomes distinguishable
in a magnetic field by their energies: E0↓, E0↑ = E0↓ + EZ, where E0↓, E0↑ are the
energies of electron in ground orbital states, EZ = gµBBz is the Zeeman energy
(i.e. the energy splitting between electron spin states |↑⟩ and |↓⟩), where g is the
effective electron spin g-factor8, µB is the Bohr magneton, and Bz is the z-component
of magnetic field. The first excited orbital is separated from the ground one by the
energy gap ∆Eorb, which is much higher than energies of thermally populated (at
mK temperatures) phonon modes in the QD, so thermal excitations of electron to
higher orbital states can be safely neglected that makes its spin states reliable qubit
states.

Such a qubit can be easily initialized by putting it into a strong magnetic field
and waiting a while until it equilibrates to its ground state [73]. This occurs at time
scales of milliseconds and longer [74] and is caused by phonon emission accompanied
by spin flip made possible by finite spin–orbit coupling for conduction band electrons
in a given semiconductor. A couple of faster ways of electron state initialization
have been proposed, e.g. spin injection from a ferromagnet [73], by spin-polarized
current from a spin filter [73], or simply by gradual deepening of the confining
potential which results in populating an empty QD with a single electron: in a
strong magnetic field in such system configuration only electron in spin up state
can tunnel into a QD from 2DEG while energy of spin down state is kept higher
than electrochemical potential of 2DEG [47]. In the Loss–DiVincenzo proposal [73],
it has been suggested that single-qubit gates can be realized by applying locally
appropriate magnetic fields to individual electrons for a specific period during which
a desired rotation of an electron spin state is completed. These magnetic fields
could be external ones (e.g. produced by a magnetic material on the probe tip of
a scanning microscope interacting with the device) as well as could originate from
the nuclear spins of atoms of the QDs (Overhauser field) or even could be effective

7 Apart from the fact that energy difference between the ground state and first excited one
can be measured in experiment, the order of its magnitude can be roughly estimated in advance
from the size of confining potential, which can be evaluated from the geometrical size of QD for
that purpose: assuming an electron in a rectangular potential box, the energy levels are given by

well-known formula Enx,ny,nz
= ℏ2π2

2m∗
e

((
nx

Lx

)2
+
(

ny

Ly

)2
+
(

nz

Lz

)2)
, and for L ≈ 20 nm the energy

difference ∆Eorb is of the order of 1 meV for a gated AlGaAs/GaAs QD.
8 Electron in a AlGaAs/GaAs heterostructure has g ≈ −0.4 < 0, so EZ < 0 and E↑ < E↓.
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ones due to interaction of the electron through tunnel coupling with an adjacent
ferromagnetic QD, etc. It has been shown in experiment that state of a single
electron can be coherently manipulated with a high precision using electron spin
resonance (ESR) technique [75, 76, 77, 47], which requires to invest an additional
effort in designing and production of an appropriate device, since to execute ESR
manipulations one needs to generate ac magnetic field in that device and to apply
it perpendicularly to the constant magnetic field already present in the QD. In such
a case, the electron spin Hamiltonian acquires a time-dependent term: Ĥq(t) =
1
2
gµB (Bzσ̂z +Bx cos(ωt+ θ)σ̂x), where ω is the frequency of the ac magnetic field

and θ is its initial phase. To have an effect, the ac magnetic field frequency ω used
in ESR should be close to that associated with the spin splitting energy, gµBBz

ℏ .
Clear evidence of coherent rotations (Rabi oscillations) of a single electron spin
done by ESR was reported for the first time in Ref. [77], although amplitude of
Rabi oscillations decreases with time ∝ 1√

t
due to decoherence caused by electron’s

environment consisting of nuclear spins.
Since in the Loss–DiVincenzo proposal [73] the electrically gated lateral QD

was chosen as a prototype system, it was shown there that two-qubit gates can
be realized for such qubits by pulsing the exchange coupling between neighboring
confined electron spins that can effectively be described by the two-spin Hamiltonian
of an isotropic Heisenberg form, Ĥ2q(t) = J(t) ŜL⊗ ŜR, where Ŝ is the electron spin
operator of left or right QD, and J(t) is the coupling between the spins. In the
considered QD system, exchange coupling could be produced by varying the voltage
on the interdot gate electrode that leads to lowering the potential barrier between
the QDs, so exchange coupling increases with growing overlap of electron wave
functions localized in the two QDs. The same effect can be achieved with a constant
voltage on the interdot gate electrode when QD potential minima are elevated by
applying a proper voltage to the back gates of the device [58], so electrons get less
localized and because of that overlapping of wave functions increases. Assuming in
the simplest case a stepwise change of J(t), after a time period τs = π

J0
, where J0 is

a constant value of the coupling J(t) when it is switched on, two qubits exchange
their states, which means that SWAP gate is completed. In half of that time period,
τs/2,

√
SWAP gate is performed, which together with single-qubit operations forms

a complete set of quantum gates for quantum computation [73, 78, 79].
A few ways of a single-shot measurement of such a qubit were initially pro-

posed [73], e.g. the inference of a spin states of electron by making use of a super-
cooled paramagnetic dot to which electron tunnels from the QD. Electron stimulates
the transition of such a paramagnetic dot to the ferromagnetic phase. The direction
of magnetization of a created ferromagnetic domain will agree with the measured
electron spin state, and it could be measured by conventional means. Another pos-
sible way to measure electron spin state is to use a spin valve connected to the QD.
The spin valve would allow to tunnel through it only electron being in one certain
spin orientation. In such an arrangement, an electron being in allowed spin state
tunnels to the next QD, where it will be detected due to its charge by a sensi-
tive electrometer. Finally, it turned out that in practice the most convenient way
to measure a spin state of an electron is to make use of spin-to-charge conversion
and observe the electric current through a QPC which is located near the QD [47].
A spin-to-charge conversion is based on the simple fact that if the QD ground spin
state (say, state |↑⟩) is below the electrochemical potential of the 2DEG outside the
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QD, and another spin state is above that potential, then only the electron in state
|↓⟩ can tunnel off the QD (energy-selective readout) [47]. A spin-to-charge conver-
sion can also take place in a system configuration where both states are above the
2DEG electrochemical potential but have different tunnel rates, Γ↑ and Γ↓. When
difference in tunnel rates of different spin states is high enough, e.g. Γ↓ ≫ Γ↑, elec-
tron will tunnel off the QD mostly from the spin state |↓⟩ during measurement time
Γ−1
↑ ≫ τ ≫ Γ−1

↓ (tunnel-rate-selective readout) [80, 47].

1.2.3 Double quantum dots and singlet-triplet qubits

A double gated lateral QD (DQD) is of special interest because it also offers a pos-
sibility to use two-electron spin states as a qubit that can be fully controlled by
gate voltages, with no need for time-dependent magnetic fields. Since the confining
potential of each QD can be controlled independently, the QDs may be differently
populated with electrons, which can be seen on charge stability diagram or expe-
rimentally measured charge sensing data. Charge stability diagram of a DQD is
derived within the constant interaction (or capacitive charging) model [81, 82, 47].
In that model, couplings of QDs to each other as well as to the exterior or gates
are represented as capacitors and the position of confining potential bottom directly
depends on the voltage on the corresponding gate electrode. Two simplifying as-
sumptions are used in this model: Coulomb interaction between electrons inside
the QD as well as with the QD exterior is parameterized by a constant capacitance
C, and the QD single-particle energy spectrum is obtained for non-interacting elec-
trons, so the total energy of the QD system is a sum of energies of the populated
energy levels and corresponding multiplicity of charging energy (a term propor-
tional to square of the number of electrons in the QD, N2, and the charging energy
EC = e2

C
, where e is electron charge and C is a capacitance of the QD) along with

the energies associated with the QD electrodes due to supplied voltages on them.
Therefore, within the model, the addition of an electron to the QD requires energy
Eadd = EC + ∆E, where ∆E is the energy difference between the highest already
occupied state and the next one. The main finding which came out from that model
and has been confirmed in experiment is the fact that charge configurations form
a hexagonal (honeycomb) lattice which fills the plane parameterized in orthogonal
directions by gates’ voltages [83, 47, 82].

When a DQD is in a two-electron configuration, e.g. (1, 1) or (0, 2), where the
symbol (n,m) denotes the electron populations of individual QDs comprising the
DQD, the possible spin states of electrons are a singlet and three triplets:

|S⟩ =
1√
2
(|↑↓⟩ − |↓↑⟩) ,

|T0⟩ =
1√
2
(|↑↓⟩+ |↓↑⟩) ,

|T+⟩ = |↑↑⟩,
|T−⟩ = |↓↓⟩.

In experiment, during manipulation of two-electron states, typically one keeps
the average energy of electron ground states in two QDs constant, or in other words,
the sum of QD electrochemical potentials is fixed. For description of the shape of
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confining potential of a DQD staying in a two-electron configuration, and, as a con-
sequence, relative positions of electron energy levels, a parameter called detuning
is used. This parameter is defined by different authors in one of two ways: either
as a difference ε between energies of singlet states |S(1, 1)⟩ and |S(0, 2)⟩ (so, ε = 0
at anticrossing of states |S(1, 1)⟩ and |S(0, 2)⟩, which takes place when a confining
potential of the second QD is deeper) [47], or as a difference ϵ between the elec-
trochemical potentials of QDs (and then ϵ = 0 corresponds to symmetric confining
potential of DQD) [48]. In a configuration in which both electrons are in the same
QD, e.g. (0, 2) when ε > 0, singlet and triplet states are naturally split by energy
approximately equal to the difference of energies between the first excited orbital
and the ground orbital9, whereas for slightly negative ε that corresponds to the
configuration (1, 1), in which electrons are localized in different QDs, the energy
difference between singlet and triplet states, denoted by J , is a function of the tun-
nel coupling tc between the QDs and the energy EC of charging of a single QD
(energy of Coulomb interaction between two electrons in the QD). The magnitude
of J strongly depends on tunnel coupling tc between the QDs, which can be seen
from an estimate derived using a Hubbard approximation for a DQD [48],

Ĥ = (EC − ϵ)|S(0, 2)⟩⟨S(0, 2)|+ (EC + ϵ)|S(2, 0)⟩⟨S(2, 0)|
+
√
tc(|S(2, 0)⟩⟨S(1, 1)|+ |S(0, 2)⟩⟨S(1, 1)|+ h.c.),

that is written using a particular choice of zero energy – it is set at the level of
sum of electrochemical potentials of the QDs10. From this Hamiltonian one can
obtain J ≈ 4t2c

EC

E2
C−ϵ2

[78, 48], so J can be varied in a wide range, practically from 0
to some Jmax, either by varying the detuning ϵ while keeping constant tc of tunnel
coupling [47], or by varying the interdot barrier height at fixed detuning ϵ which
leads to changes of constant tunnel coupling tc [84]. It is worth stressing that singlet
state in a DQD is a mixture of spatially distributed state |S(1, 1)⟩ with spatially
concentrated states |S(2, 0)⟩ and |S(0, 2)⟩, which can be sketched from the Hubbard
approximation as |S⟩ ≈ |S(1, 1)⟩ −

√
2tc

EC−ϵ
|S(0, 2)⟩ −

√
2tc

EC+ϵ
|S(2, 0)⟩, whereas triplet

state is always a spatially distributed state |T (1, 1)⟩, because entering an excited
orbital is energetically inaccessible for electrons in typical experimental conditions
[47, 48].

Exchange interaction between electron spins conserves the total spin (S = 0 for
singlet and S = 1 for triplet) as well as its z projection, so two-electron states with
different values of z projection hardly mix with each other, and hence, it is possible
to use singlet |S⟩ and unpolarized triplet |T0⟩ as a qubit (called S-T0 qubit) when
constant external magnetic field (typically, B = 0.1÷ 1 T) is applied in the plane of
2DEG that splits off polarized triplets |T+⟩ and |T−⟩ from the states |S⟩ and |T0⟩.
Naturally, splitting energy J between singlet |S⟩ and triplet |T0⟩ becomes the key
parameter of S-T0 qubit. The other possibility to affect the state of S-T0 qubit arises

9 Antisymmetry of singlet two-electron wave function under particle exchange is secured by
wave function’s spin part, so two electrons being in singlet state may stay in the same orbital. In
contrast to this, antisymmetry of triplet wave function is due to spatial part of the wave function,
so at least two different orbitals must be occupied by electrons.

10 Term |S(1, 1)⟩⟨S(1, 1)| and all three triplet terms |Ti(1, 1)⟩⟨Ti(1, 1)| with i = 0,+,− are not
explicitly seen in the Hamiltonian because they are multiplied by zero energy, whereas triplet terms
|Ti(0, 2)⟩⟨Ti(0, 2)|, |Ti(2, 0)⟩⟨Ti(2, 0)| with i = 0,+,− are not included in the Hamiltonian because
of their too high energies.
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when magnetic field in QDs is different, i.e. a gradient of magnetic field ∆Bz in the
DQD is present, which leads to mixing of singlet |S⟩ and triplet |T0⟩ as a result of
oscillating relative phase between the states |↑↓⟩ and |↓↑⟩: |S⟩ = 1√

2
(|↑↓⟩ − |↓↑⟩) t−→

1√
2

(
|↑↓⟩ − eit∆Bz |↓↑⟩

)
. Therefore, the Hamiltonian of S-T0 qubit written in basis of

states |S⟩ and |T0⟩ reads as follows

Ĥq =
J(t)

2
(|T0⟩⟨T0| − |S⟩⟨S|) + ∆Bz

2
(|T0⟩⟨S|+ |S⟩⟨T0|) =

1

2

(
J(t)σ̂z +∆Bzσ̂x

)
,

(1.6)
where parameter ∆Bz denotes the energy associated with magnetic field gradient
between the QDs (in fact, this energy may be also due to difference of electron
g-factors between the QDs).

It is worth to note that S-T0 qubit uses a two-electron states that are insensitive
to global magnetic field, since both |S⟩ and |T0⟩ have zero z projection, i.e. these
states are from the decoherence free subspace of two-electron state space. Neverthe-
less, S-T0 qubit still remains sensitive to fluctuations of local magnetic field (external
one or the Overhauser field generated by the nuclei of the atoms of the nanostruc-
ture) or local value of g-factor that result in fluctuating ∆Bz term of the qubit’s
Hamiltonian. Moreover, due to the fact that J depends on the confining poten-
tial, which is controlled electrically, the splitting energy J is, hence, susceptible to
fluctuations of local electric field in the DQD.

Initialization of S-T0 qubit starts from the empty DQD configuration (0,0) and is
executed by gradual deepening the confining potential of one of QDs. That QD traps
two electrons from 2DEG in a sequence, the final state of which is singlet, since the
confining potential is never made too deep to bind the triplet state in a single QD.
Next, DQD configuration is changed to the basic operational configuration (1,1) by
smooth reducing the detuning ε making DQD confining potential almost symmetric.

Once the DQD is in (1,1) configuration, an attempt to bring two electrons into the
same QD by gradual tilting the confining potential which pushes one of the electrons
into the other dot discriminates singlet (electron has tunnelled to the neighboring
QD) and triplet (electron stays in its QD) states, hence, acts as a measurement from
which one can infer what was the two-electron spin state by observing the charge
distribution in the DQD. This phenomenon is called the Pauli spin blockade. As
long as the total spin of two electrons confined in a DQD is conserved (which is true
up to, at least, millisecond time scale [74]), the spatial parts of their wave function
are uniquely correlated with their spin states, and for moderate detunings |ϵ| ≈ EC

the transitions between charge configurations (1, 1) → (0, 2) and (1, 1) → (2, 0) are
possible only from singlet state |S⟩.

As can be seen from the Hamiltonian of S-T0 qubit (Eq. (1.6)), such a qubit
has two naturally predefined axes of rotations, x and z, therefore, to rotate a qubit
state about one of these axes, its rotations about another one must be suppressed
(by vanishing the corresponding factor in Eq. (1.6)). It is possible in experiment
to change rapidly the value of J in a wide range, starting practically from 0, but
∆Bz cannot be tuned at a necessarily high rate. This causes some difficulties in its
operation that, however, can be overcome by designing advanced control sequences
which are based solely on control of J(t) and overshadowing of ∆Bz by high enough
value of J when needed (see Chapter 4 for more details).

The fact that the asymmetric charge distribution in DQD is characteristic only
for singlet state has one more important implication. When two closely located S-T0
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qubits both are in singlet states they become coupled through the electric dipole-
dipole interaction, which slightly changes charge distributions in both DQDs and,
as a result, impacts the actual values of energy splittings, J1 and J2, of these qubits,
so two-qubit interaction Hamiltonian is of Ising form Ĥint ∝ |SS⟩⟨SS| or, in matrix
representation, ∝ (σ̂z + 1)⊗2, which allows to perform the two-qubit CPHASE gate
on a pair of S-T0 qubits.

A number of other physical realizations of a qubit in gated lateral QDs has been
proposed [48]. For example, the concept to use states |S⟩ and |T+⟩ of two electrons in
a DQD as a qubit has been reported [85], although no experimental demonstration
of such a working device is available [48]. A desire to have electrical-only control over
qubits has led to elaboration of several concepts of a-few-electron qubits, all single-
and two-qubit operations on which can be performed using the exchange interaction
between electrons that is ultimately controlled by voltages on the device’s gates [48].

1.2.4 Other kinds of quantum dots

Gated vertical QDs are similar to gated lateral QDs. Vertical QD is formed by
etching a pillar in GaAs/AlGaAs/InGaAs/AlGaAs/GaAs heterostructure, so elec-
trons can be confined in InGaAs layer, since conductance band bottom of InGaAs
is lower than that of adjacent layers. The shape of vertical QD confining potential
is mainly defined by the geometry of the QD, which typically is about a few hun-
dred nm in diameter and its thickness is approximately 10 nm. The side metallic
gate, which wraps the pillar, provides a possibility to squeeze the lateral binding
potential of the QD that allows to control the number of electrons in the QD in a
precise way via voltage on the gate. A constant interaction model helps greatly to
understand the properties of gated vertical QDs, e.g. such as charge stability dia-
gram with characteristic Coulomb diamonds. A DQD has also been realized using
vertical arrangement [81].

Self-assembled QDs are obtained by the Stranski-Krastanov growth in the process
of molecular-beam epitaxy, in which due to the mismatch of lattice constants of
substrate (e.g. GaAs) and QD material (e.g. InAs) the resulting strain forms small
islands of QD material embedded in the host material. The obtained QDs have
a lens shape with typical size of a few tens nm in diameter at most and a few
nm in width in growth direction. By repeating that process, one can fabricate
a device with several layers of QDs. In such nanostructures, strains that arise
near the QDs in the lower layer predetermine to great extent the positions of the
QDs in the subsequent layers, so the chains of QDs tend to form in a multilayer
structure. In particular, this is helpful for the fabrication of DQDs, i.e. systems of
two nearly situated QDs separated by a thin barrier layer (about 9 nm [62, 86]),
so tunneling of the electron from one QD to another is possible. In self-assembled
QDs, charge carriers are usually tightly confined in the QDs (compared to gated
lateral ones) because potential 3D well is deep enough, e.g. in a InAs/GaAs QD the
discontinuities of the bottom of conduction band as well as the top of valence band
for heavy holes are about 0.4 eV, so excitons, produced by optical pulses stimulating
electron interband transitions, do not escape from the QDs. Therefore, transitions
from single-electron states in the QD to some optically excited ones and back can
be utilized as a means of initialization, manipulation and read out of a spin state
of electron [55]. The QDs constituting a DQD are intentionally made of slightly
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different sizes that imply they have different optical transition energies, and hence,
this enables optical access to each of the QDs independently by using appropriate
laser frequency while the device is operated at liquid helium temperatures. The
QDs are enclosed in a Schottky diode. This enables for applying a proper voltage to
the device, which translates into an electric field bias inside the structure along the
growth direction, and, as a result, allows to populate each of QDs with one electron
and to tune their energy levels.

Initialization of spin states as well as single-spin and two-spin manipulations
are possible due to optical transitions between electron states and some optically
excited states (e.g. trion states). Depending on a system configuration11 realized in
experiment, certain selection rules for optical transitions applies, according to which
one can choose a Λ-system consisting of electron spin states and some excited one and
use it for electron spin manipulations [54, 55]. For example, when QD is populated
with a single electron its spin may be faithfully initialized by optical pumping the
frequency and the polarization of which is tuned to the transition between the higher
single electron spin level (say, |↓⟩) and the corresponding trion level (|↑↓⇓⟩, a pair
of electrons and a heavy hole). After a few cycles, the electron spin state |↑⟩ is
initialized, since the end state after electron-hole recombination can be both |↑⟩
and |↓⟩, but the state |↓⟩ is continuously emptied by the pumping [87]. Similarly, a
DQD can be initialized in singlet state by optical pumping when Λ-system consists of
singlet, triplet and corresponding exciton state [62]. The complete control of a single
electron qubit is based on use of ultrafast optical broadband rotation pulses, which
are tuned in such a way that they do not directly excite any trion in the QD but give
a raise to an effective coupling between the single electron spin states (i.e. rotation
about qubit’s x axis) through stimulated Raman transitions [87]. On the other hand,
every superposition of the basis states precesses about the direction of the external
magnetic field12 (i.e. rotation about qubit’s z axis), so by combining together the
two kinds of rotations any transformation of the qubit state becomes achievable.
In has been demonstrated in the experiment [62] that applying a narrowband laser
pulse tuned to singlet (or triplet) state results in the effective two-qubit interaction
due to coherent driving the system to an excited state, which adds a phase ϕ to that
component of a two-qubit state: |S⟩ control pulse−−−−−−−→ eiϕ|S⟩ (or |T0⟩

control pulse−−−−−−−→ eiϕ|T0⟩).
The electron spin state can also be measured with the help of optical pumping.
In a single QD the frequency of optical pumping should be tuned to the state |↓⟩:
when the electron is in the state |↓⟩, the QD system can be driven to the trion state
to transit subsequently from the trion state to the state13 |↑⟩ emitting a photon,
which will be registered by a single-photon counter with a proper optical filter [87];
whereas in a DQD the probe laser should be tuned to the triplet transition, and
similar scheme of utilization of a Λ-system is used, which reveals the electron spin
state in the measured differential optical transmission of the device [62].

Self-assembled QDs have a disadvantage: the shape of the confining potential
of the self-assembled QD is mainly determined by its geometry and chemical com-

11 Mutual orientation of the optical axis and the direction of the external magnetic field is called
Voigt geometry when they are perpendicular and Faraday geometry when parallel.

12 In the experiment [87], a quite strong magnetic field Bext = 7T was used.
13 Transitions from the trion state back to the state |↓⟩ are allowed as well, but there is obvious

difficulty to count photons created in such transitions while photons of pumping laser are of the
same energy, so that part of transitions from the trion state is not taken into account.
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position. As one cannot have full control over the growth process, not all grown
QDs have the desired properties. Moreover, the properties of self-assembled QDs
are harder to adjust by external electric field, in contrast to electrically defined QDs,
which are easier to tune the shapes of their confining potentials and to change them
dynamically when needed.

1.3 Decoherence of Quantum Dot Spin Qubits

Before the discussion of the decoherence of QD spin qubits, it is instructive to
recall the definitions of the key parameters used for description of the decay of
qubit’s states, namely, time constants T1, T2, and T ∗

2 . These parameters have first
been introduced in a phenomenological model (Bloch equations) for description of
dynamics of magnetic moments of nuclei [88]. Bloch equations are applicable to a
qubit as well and provide an effective description of the dynamics of the state of a
qubit that dissipatively interacts with its memoryless environment:

drrr(t)

dt
= grrr(t)×BBB − r1(t)

T2
iii− r2(t)

T2
jjj − r3(t)− requil3

T1
kkk,

where a Cartesian coordinate system with a standard basis {iii, jjj,kkk} set by the di-
rection of a constant external magnetic field BBB is used in which z direction is along
the field BBB, so BBB ≡ (0, 0, Bz) ≡ (0, 0, B3), g is the gyromagnetic ratio, and requil3 is a
state of equilibrium between the qubit and its environment in the constant external
magnetic field BBB. The two limiting cases should be noted: qubit at zero temper-
ature, leading to requil3 = −1 (the ground state of the qubit, i.e. |ψq⟩ = |↓⟩); and
qubit at infinite temperature (in practice at temperature for which kBT is much
larger than the energy splitting of the qubit, gBz), leading to requil3 = 0 (comp-
letely mixed state of the qubit, i.e. ρ̂q = 1

2
1). The Bloch equations for a qubit

are derived starting from the generalized master equation d
dt
ρ̂(t) = −iL

(
ρ̂(t)

)
with

L ≡ [Ĥ(t), ρ̂(t)], which describes evolution of the density operator ρ̂(t) of the sys-
tem consisting of a qubit interacting with its environment (the Hamiltonian of the
system contains Hamiltonians of the qubit, its environment and their interaction:
Ĥ(t) = Ĥq(t) ⊗ 1E + 1q ⊗ ĤE(t) + Ĥint(t)) by making use of Born’s approxima-
tion (when coupling between the qubit and its environment is weak) in tandem
with Markov’s approximation (when temporal correlations of qubit’s environment
are vanishing on time scales much shorter than the time scales on which the qubit
dynamics happens, so qubit’s evolution depends solely on the present state of its
environment), so one can rewrite the master equation in form of so-called Redfield
equation (i.e. the Born-Markov master equation written in the eigenstate basis of
Ĥq), which contains the Redfield tensor [89, 90, 91]. Redfield equation can be next
transformed into the set of equations for expectation values of qubit’s components,
and when magnetic field is strong enough, the secular approximation of the Redfield
tensor R is justified, which results in R ≈ diag

(
1
T2
, 1
T2
, 1
T1

)
. The solutions of the
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Bloch equations indicate the exponential decay of a qubit state with time:

r1(t) =
(
r1(0) cos(gB3t) + r2(0) sin(gB3t)

)
exp

(
− t

T2

)
,

r2(t) =
(
− r1(0) sin(gB3t) + r2(0) cos(gB3t)

)
exp

(
− t

T2

)
,

r3(t) = requil3 +
(
r3(0)− requil3

)
exp

(
− t

T1

)
.

It is clear that the qubit’s coherence decays exponentially as well, ρ12 = ρ∗12 =
1
2
(r1 + ir2) ∝ exp

(
− t

T2

)
t→∞−−−→ 0.

Change of populations occurs on a time scale which is described by the longitu-
dinal relaxation time constant T1, whereas coherence decay is characterized by the
transversal relaxation time constant T2. The parameter T1 is also called a decay
time, since it indicates a time scale on which qubit’s excited state will be gone,
while the parameter T2 is also called a dephasing time, as it specifies a time scale on
which a superposition of qubit’s basis states turns into a statistical mixture of them.
When a qubit’s observable is derived from an ensemble measurement14 of a number
of qubits, which are in a spatially inhomogeneous magnetic field, the transversal
relaxation is described by the effective time constant T ∗

2 (instead of T2), which ac-
counts for the ensemble averaging. The normal distribution of external magnetic
field over the ensemble, which is the most common case, leads to the Gaussian decay
of qubit’s coherence ∝ exp

(
−
(

t
T ∗
2

)2).
One can catch the relation between T1 and T2 using the simplest example of a

qubit interacting dissipatively with its environment at zero temperature expressed
in terms of the quantum master equation [92, 93, 2]: d

dt
ρ̂q(t) = L

(
ρ̂q(t)

)
, where

L
(
ρ̂q(t)

)
= −i[Ĥq, ρ̂q(t)] +

∑
j γj

(
Âj ρ̂q(t)Â

†
j − 1

2
Â†

jÂj ρ̂q(t)− 1
2
ρ̂q(t)Â

†
jÂj

)
with the

Hamiltonian Ĥq = 1
2
gµBB3σ̂3 and a single operator Â = 1

2
(σ̂1 − iσ̂2) describing

the relaxation with a rate γ from the excited state to the ground state. The time
evolutions of the density operator elements are given by the following expressions:

ρ11(t) = ρ11(0) exp(−γt),
ρ22(t) = 1− ρ11(t) = 1− ρ11(0) exp(−γt),

ρ12(t) = ρ∗21(t) = ρ12(0) exp

(
− i

2
gµBB3t

)
exp

(
−1

2
γt

)
,

from which one can see that T1 = 1
γ

is twice shorter than T2 = 2
γ
. In fact, this is the

fundamental upper bound for the dephasing time T2, which cannot be grater than
2T1.

In a semiconductor QD, electron spin interacts with external magnetic field, with
electric field through spin–orbit interaction, with other spins in its surroundings,
and with electrons from the 2DEG through virtual exchange processes. The latter
processes can be safely neglected, as they strongly depend on the tunnel coupling
with the exterior of a QD [94, 47], which in typical operation of electron spin qubits is

14 Ensemble can be spatial, when qubits are placed in different positions in space and are
measured together at once, or temporal, when it is obtained by repeating the same manipulations
on the same qubit.
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low enough. The external magnetic field is precisely controlled by experimentalists,
so it does not lead to an unintentional dephasing of electron spin qubits. Thus, we
are left to look closely at the impact of spin–orbit interaction and interaction with
nuclear spins on a state of electron spin in a QD.

1.3.1 Decoherence due to spin-orbit interaction

In a crystal possessing the bulk inversion asymmetry (e.g. GaAs, which has the
zinc-blende structure), the Dresselhaus contribution to the spin–orbit interaction
takes place [95, 96, 47] (although a crystal is electrically neutral, lack of spatial
inversion symmetry of local charges leads to emergence a momentum-dependent
effective magnetic field for an electron inside such a crystal [97], and results in
a nonzero net contribution to spin–orbit interaction). Moreover, an asymmetric
confining potential causes another kind of spin–orbit interaction due to the structural
inversion asymmetry, called the Rashba contribution [98, 99]. In gated lateral QDs,
the origin of that contribution is the asymmetry of the confining potential of 2DEG
at the interface of AlGaAs and GaAs [70] causing a mixing of states of electrons
from different bands (conduction and valence ones) that produces an effect, which
can be interpreted as an effective electric field acting on a confined electron [100, 47].
Ultimately, for an electron from 2DEG which is formed in the plane perpendicular
to (001) crystallographic direction (z direction) of a zinc-blende crystal the reduced
Dresselhaus Hamiltonian reads as [95, 47]

Ĥ
2D,(001)
D = β(−p̂x ⊗ σ̂x + p̂y ⊗ σ̂y),

where p̂x, p̂y are the components of the electron’s momentum operator, and β is the
parameter of the Dresselhaus contribution, which depends on the material properties
and on the degree of electron confinement in z direction, ⟨p̂2z⟩, while the Rashba
Hamiltonian when the confining electric field is along z direction reads as [47]

ĤR = α(−p̂y ⊗ σ̂x + p̂x ⊗ σ̂y),

where α is the parameter of Rashba contribution, which also depends on the material
as well as on the confining potential.

Although the spin–orbit Hamiltonian, ĤSO = Ĥ
2D,(001)
D + ĤR, does not directly

couple different electron spin states of the same orbital [47],

⟨nlσ̄|ĤSO|nlσ⟩ ∝ ⟨nl|p̂x,y|nl⟩⟨σ̄|σ̂x,y|σ⟩ = 0

(where |nlσ⟩ is an electron state obtained in the 2D harmonic oscillator approxima-
tion [81] having the radial quantum number n = 0, 1, 2, ..., the angular momentum
quantum number l = 0,±1, ..., and the spin quantum number σ, |↑⟩ or |↓⟩, while σ̄
denotes the opposite of σ), because ⟨p̂i⟩ = 0 for a confined electron, this Hamiltonian
mixes electron states of both different spatial and spin parts. In the case when the
unperturbed Zeeman energy |EZ| is much less than differences between energies of
subsequent orbitals ∆Eorb (which is true for typical experiments), the eigenstates of
an electron in a gated lateral QD can be approximated in first order perturbation
theory as [47]

|nlσ⟩(1) = |nlσ⟩+
∑

(n′, l′ )̸=(n, l)

⟨n′l′σ̄|ĤSO|nlσ⟩
Enl − En′l′ + EZ⟨σ|σ̂3|σ⟩

|n′l′σ̄⟩. (1.7)
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One can see from the above formula that actual electron states, despite a heuristic
argument that electron state (or wave function) can be decomposed into separate
spatial and spin parts because of energetic inaccessibility of higher orbitals, are in
fact the mixtures of different orbitals and spin states. Nevertheless, the two lowest
perturbed states differ only by the spin quantum number, |00↓⟩(1) and |00↑⟩(1), so
after the renormalization of the Zeeman energy, E(1)

Z = E
(1)
↑ −E

(1)
↓ , one can refer to

these states as spin up and down states of an electron confined in a QD. Complex
structure of the electron states (Eq. (1.7)) enables an indirect mechanism of influence
of electric field on an electron spin state, leading to electron spin relaxation due to
fluctuations of electric field. The electric field inside a QD can fluctuate due to a
number of reasons, such as fluctuations of gate potentials, charge fluctuations in the
nanostructure, electric noise in the device, etc. Besides this, the phonon bath can
produce noticeable fluctuations of local electric field: deformation potential phonons
cause a spatial modulation of the band gap as they inhomogeneously deform the
crystal lattice, while in a polar crystal (e.g. GaAs) homogeneous strains caused by
piezoelectric phonons create an additional contribution to the local electric field due
to piezoelectric effect. As it turned out in experiment, the decohering impact of
electric-field fluctuations created due to phonons prevails that of other sources, so
the interaction of a confined electron with phonons should be accounted first. From
the general consideration, it is obvious that to relax an electron from a higher spin
state to a lower one its energy should be transferred to a phonon simultaneously
with accomplishment of a spin flip, which is also performed by a phonon through
the coupling between different electron states perturbed by the electron–phonon
interaction. The efficiency of spin-flip process due to phonons depends on several
factors, such as the degree of coupling between orbital and spin parts of electron
states, the strength of electric field produced by a single phonon, the strength of
phonon coupling to particular electron orbitals, the phonon occupation, the strength
of external magnetic field. Detailed analysis of mentioned factors predicts that the
relaxation rate due to phonons at low temperatures T ≪ |EZ|

kB
scales with magnetic

field as follows [101, 47]: 1
T1

∝ |EZ|5
∆E4

orb
∝ B5, which was confirmed in experiment

[74, 47], while at high temperature T ≫ |EZ|
kB

the relation is [47]: 1
T1

∝ E4
ZkBT

∆E4
orb

. It
has been theoretically shown that spin–orbit interaction induces no pure dephasing
of electron spin [102], so the upper bound on the dephasing time would be its
actual limit for spin of an electron confined in a QD, T2 = 2T1, if interaction with
phonons was the only reason of electron spin dephasing. It has been experimentally
established that in gated lateral AlGaAs/GaAs QDs at moderate magnetic fields
(B ≈ 1 T) the spin relaxation time T1 can be as long as 1 s [74].

1.3.2 Hyperfine interaction

Magnetic interaction of an electron confined in a QD with atoms’ nuclei can be
described analogously as the same interaction of an electron in an atom [90, 103].
The description of the magnetic interaction in an atom, which is referred below af-
ter Ref. [104], is based on a few assumptions consistent with actual atom’s physics.
Firstly, magnetic properties of a nucleus are described by its magnetic dipole µµµJ =
γJℏJJJ , where γJ = gJ

ep
2mp

is the nucleus’ gyromagnetic ratio (gJ is the g-factor of
the nucleus, ep is the proton’s charge, mp is the proton’s mass), and JJJ is the nu-
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cleus’ spin15. Secondly, the interaction of the nucleus (nuclear magnetic dipole)
with the electron being in some stationary orbital is derived ab initio from the ba-
sic nonrelativistic Hamiltonian of Pauli equation using a perturbation method. In
particular, the electron’s momentum ppp is replaced by the generalized momentum
ppp+eAAA, where AAA is the magnetic vector potential possessing the following properties:
divAAA = ∇∇∇ ·AAA = 0, and curlAAA = ∇∇∇ ×AAA = BBB, where BBB is the magnetic field. At
a point in space specified by the position vector (or radius vector)16 rrr, a magnetic
dipole17 creates a magnetic field, which according to the classical electromagnetic
theory quantitatively is18 AAA = µ0

4π
· µµµ×rrr

r3
= µ0

4π
·curl

(
µµµ
r

)
= µ0

4π
·∇∇∇×

(
µµµ
r

)
= µ0

4π
·∇∇∇
(
1
r

)
×µµµ,

where µ0 is the permeability of vacuum, rrr is the position vector and r is its length.
The Hamiltonian of an electron in a magnetic field reads

H =
1

2me

(ppp+ eAAA)2 + geµBSSS · curlAAA (1.8)

=
ppp2

2me

+
e

2me

(ppp ·AAA+AAA · ppp) + geµBSSS · curlAAA+
1

2me

(eAAA)2

= H0 +H1 +H2, (1.9)

whereme is the electron’s mass, e is the electron’s charge, ge is the electron’s g-factor,
µB = eℏ

2me
is the Bohr magneton, and SSS is the electron spin quantum operator, con-

sisting of Pauli matrices. The introduced symbols Hi contain the terms of ith order
in magnetic vector potential AAA from Eq. (1.8). Equation (1.9) can be considered as
an expansion of H in a series with expansion parameter AAA. In the present case, it
is expected that the first order correction will provide good enough description of
the interaction between nucleus (magnetic dipole) and electron residing in atom’s
orbital, so we neglect H2, which does not contain the electron spin operator, and
concentrate on the Hamiltonian H1:

H1 =
e

2me

(
ppp ·AAA(µµµ, r) +AAA(µµµ, r) · ppp

)
+ geµBSSS · curlAAA(µµµ, r). (1.10)

The Hamiltonian H1 (Eq. (1.10)) can be written in the following form using above-
mentioned relation between the magnetic vector potentialAAA and the magnetic dipole
µµµ, which creates it:

H1 =
µ0

4π
geµB

(
lll · µµµ
r3

+SSS · curl curl
(µµµ
r

))
, (1.11)

where lll related to the quantized orbital momentum of the electron LLL = ℏlll = rrr×ppp is
used. The second term of the Hamiltonian H1 (Eq. (1.10)), which is spin-dependent,

15 In the consideration spins are treated unequally: the spin of a nucleus is treated as a source of
a magnetic field, whereas the spin of an electron is described quantum-mechanically after W. Pauli
[105].

16 The origin of the coordinate system is set at the location of the nucleus (magnetic dipole).
17 From now on the label J in the subscript of µ and γ is dropped.
18 Here, the physical quantities appearing in the equations are expressed in units of the Inter-

national System of Units (SI).
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can be written as

Hs
1 =

µ0

4π
geµBSSS ·

[
∇∇∇×

(
∇∇∇×

(µµµ
r

))]
(1.12)

=
µ0

4π
geµB

[
(SSS · ∇∇∇)(µµµ · ∇∇∇)− (SSS · µµµ)∇∇∇2

] 1
r

(1.13)

=
µ0

4π
geµB

[
(SSS · ∇∇∇)(µµµ · ∇∇∇)− 1

3
(SSS · µµµ)∇∇∇2

](
1

r

)
− µ0

4π

2

3
geµB(SSS · µµµ)∇∇∇2

(
1

r

)
,

(1.14)

where identity ∇∇∇ × (∇∇∇ × vvv) ≡ ∇∇∇(∇∇∇ · vvv) − ∇∇∇2vvv, which is true for any arbitrary
vector vvv, was used to transform Eq. (1.12) into Eq. (1.13). The term of Eq. (1.13)
−(SSS · µµµ)∇∇∇2

(
1
r

)
≡ (−1

3
− 2

3
)(SSS · µµµ)∇∇∇2

(
1
r

)
has been split in two terms in Eq. (1.14).

Such a representation of that term is justified [104, 103], as it helps in calculation
of matrix elements of that Hamiltonian, ⟨ψe|Hs

1|ψe⟩, where ψe is the electron’s wave
function, which is performed as follows. Integration over the electron’s spatial co-
ordinates can be performed in spherical coordinates with two steps in r: from 0
to some infinitesimal number η > 0 and from η to infinity. Integral over r from
η to infinity is obviously calculable, whereas integration over r in the vicinity of
0, i.e. from 0 to η, requires an inspection due to singularity of the Hamiltonian
(cf. Eq. (1.14)) at r = 0. Integration of the first term of Eq. (1.14), denoted by Hs′

1 ,
results in a finite value because Hs′

1 possesses a property that under a rotation of the
coordinate system it transforms as a spherical harmonic of the second order, which
leads to a simplification of the calculation of matrix element ⟨ψe|Hs′

1 |ψe⟩: electron’s
wave function can be expressed as a series of spherical harmonics, ψe =

∑
l alψl,

and the only nonzero terms of the matrix element are those satisfying the relation
l + l′ ⩾ 2, ⟨ψl|Hs′

1 |ψl′⟩ ≠ 0. Noting that ψl ∝ rl for r → 0, one can conclude
|⟨ψl|Hs′

1 |ψl′⟩| = |
∫ η

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ψ∗
lH

s′
1 ψl′r

2drdΩ| < ∞, where dΩ = sin θdθdϕ, as the
integrand ψ∗

lH
s′
1 ψl′r

2 ∝ rl−3+l′+2 with l + l′ ⩾ 2 (so at r = 0 the integrand has a
well-defined value of 0).

The second term of Eq. (1.14) can be expressed as follows

−µ0

4π

2

3
geµB(SSS · µµµ)∇∇∇2

(
1

r

)
=

2

3
µ0geµB(SSS · µµµ)δ(rrr)

due to the relation19 [107]: ∇∇∇2
(
1
r

)
= −4πδ(rrr). After integration over the electron’s

spatial coordinates, this term becomes 2
3
µ0geµB(SSS · µµµ)|ψe(0)|2, which has nonzero

(but finite) value only for s electron (l = 0).
After evaluating of nabla’s actions, (SSS · ∇∇∇)(µµµ · ∇∇∇)

(
1
r

)
= 3 (SSS·rrr)(µµµ·rrr)

r5
− SSS·µµµ

r3
, the

Hamiltonian H1 of the magnetic interaction of the electron with the nucleus can be
written as

H1 =
µ0

4π
geµBgJµJJJJ ·

(
lll

r3
− SSS

r3
+ 3

rrr(SSS · rrr)
r5

+
8π

3
SSSδ(rrr)

)
. (1.15)

It is worth noting that the first term in the above Hamiltonian is absent for s electron
(when l = 0), whereas the last term produces no effect for an electron residing in
any higher orbital (when l > 0).

19 This relation can also be obtained from the Poisson’s equation for a point electric charge
q: ∇∇∇2φ = − ρ

ε0
, where φ = 1

4πε0
· q
r is the electric potential of a point electric charge, ε0 is the

permittivity of vacuum, ρ = qδ(rrr) is the electric charge density; ∇∇∇2
(

1
4πε0

· q
r

)
= − q

ε0
δ(rrr) ⇒

∇∇∇2
(
1
r

)
= −4πδ(rrr) [106].
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Hamiltonian of the same form as Eq. (1.15) is used to describe hyperfine in-
teraction between nuclear spins and spins of charge carriers in a semiconductor
nanostructure [90, 103], in particular, in a QD. Since a confined electron in a QD
belongs to conduction band, the Bloch part of its wave function, which describes
properties of the electron on the scale of a lattice cell, is of s type (i.e. maximized
at the position of the nucleus), the main contribution comes from the last δ-term of
the Hamiltonian. In contrast to electron in an atom, electron in a III-V semicon-
ductor QD interacts with many nuclear spins, as it wave function extends over an
area ∼ (10 nm)3 of a crystal built of atoms having spinful nuclei, which effectively
couples the electron to about a million of nuclear spins.

The orbital part of the wave function of the conduction band electron in a
bulk semiconductor (e.g. GaAs) can be written as [108] ψe(rrr) = φc(rrr)u(rrr), where
φc(rrr) is the conduction band electron envelope function with the normalization∫
V
drrr|φc(rrr)|2 = v0, where v0 is the primitive cell volume (v0 =

a30
4

for a zinc-blende
crystal lattice with lattice constant a0), and u(rrr) is the Bloch amplitude with the
normalization20

∫
v0
|u(rrr)|2drrr = 1. Therefore, the effective Hamiltonian of hyperfine

interaction (Fermi contact interaction) for an electron in a QD can be written as

Ĥ ′
hf = A

N∑
i=1

Ŝ · Ĵiδ(rrri) (1.16)

or

Ĥhf =

∫
V

ψ∗
e (rrr)Ĥ

′
hfψe(rrr)drrr = A

N∑
i=1

Ŝ · Ĵi|φc(rrri)|2 =
N∑
i=1

AiŜ · Ĵi, (1.17)

where A = 2
3
µ0geµBgJµJ is the factor of hyperfine interaction, A = A|u(rrrJ)|2 =

2
3
µ0geµBgJµJ|u(rrrJ)|2, is the energy constant of hyperfine interaction, where Bloch

amplitude is evaluated at rrrJ, which is the position of the nucleus, φc(rrri) is the
conduction band electron’s envelope function at position rrri of the ith nucleus,
Ai = A|φc(rrri)|2 = A|u(rrrJ)|2|φc(rrri)|2 = 2

3
µ0geµBgJµJ|ψe(rrr)|2 is the coupling bet-

ween electron spin and the ith nuclear spin, and N is the number of nuclear spins
interacting with the electron. The Hamiltonian in Eq. (1.17) is the result of integra-
tion of the Hamiltonian in Eq. (1.16) over the electron’s orbital ψe(rrr). The values
of energy constant of hyperfine interaction A in GaAs and similar semiconductors
are of the order of tens of µeV [109]. The Hamiltonian of Eq. (1.17) can be written
as ∑

i

AiŜ · Ĵi ≡
∑

k=x,y,z

ĥkŜk ≡ ĥzŜz + V̂ff, (1.18)

where the three components of the Overhauser field operator are introduced, ĥk :=∑
iAiĴ

k
i , and in the third expression the term related to the longitudinal component

20 With such a choice of normalizations the envelope function φc(rrr) is dimensionless, so |φc(rrr)|2
is dimensionless as well, whereas the Bloch amplitude u(rrr) is of dimension [length]−

3
2 , hence,

|u(rrr)|2 is of dimension [length]−3. The wave function ψe(rrr) is then of dimension [length]−
3
2

and is normalized to 1:
∫
V
|ψe(rrr)|2drrr =

∫
V
|φc(rrr)|2|u(rrr)|2drrr =

∑N
i=1

∫
v
(i)
0

|φc(rrr)|2|u(rrr)|2drrr =∑N
i=1 |φc(rrri)|2

∫
v
(i)
0

|u(rrr)|2drrr =
∑N

i=1 |φc(rrri)|2 =
∑N

i=1 |φc(rrri)|2 1
v0

∫
v
(i)
0

drrr = 1
v0

∫
V
|φc(rrr)|2drrr =

1
v0
v0 = 1, where N = V

v0
is the number of primitive cells in a sample of the volume V , v(i)0 is a

volume of the ith primitive cell (all v(i)0 are equal to each other), and rrri is a position inside the ith
primitive cell.
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ĥz is separated from the transverse components appearing in the electron-nucleus
flip-flop operator V̂ff :=

1
2

∑
iAi(Ŝ

+Ĵ−
i + Ŝ−Ĵ+

i ), in which the spin ladder operators
have been used, Ŝ± := Ŝx ± iŜy, Ĵ±

i := Ĵx
i i± Ĵy

i .

1.3.3 Decoherence due to hyperfine interaction with nuclear
spins

Since couplings Ai are derived from the spatial part of the wave function of an
electron which is quite strongly localized in a QD, they are inevitably different,
beginning from the strongest ones in the center of a QD through weaker ones at the
edges of a QD to negligibly small ones far out of a QD, so in the interaction of the
electron spin with the nuclear spins is a many-body problem (so-called central spin
problem), which can have a complex dynamics (with no hope for an exact analytical
description in general case).

Complex dynamics of the system is partially due to the fact the time scale of
internal dynamics of nuclear spin bath is much longer than the time scale of dynamics
of the electron spin. Besides this, in a low or moderate external magnetic field, the
coupling between the electron spins and nuclear spin bath cannot be considered as a
weak one: the time scale of electron spin dynamics due to hyperfine interaction turns
out to be much shorter than the time scales of internal dynamics of the nuclear bath
(see the discussion below). Therefore, neither Born’s, no Markov’s approximation
is applicable to the problem of an electron confined in a QD that interacts with a
nuclear spin bath, and as a consequence the Bloch equations cannot be used as a
description of time evolution of the state of electron spin in a QD.

The nuclear spin bath Hamiltonian reads

Ĥbath =
∑
k

ωkĴ
z
k + Ĥdip, (1.19)

where ωk is the Zeeman splitting of the k-th nuclear spin, it is equal to one of ωα

values depending on the kind of nucleus present at site k, Ĥdip is the internuclear
dipolar interaction, which for typically used in experiment magnetic fields can be
approximated by its secular form:

Ĥdip =
∑
i ̸=j

bij(Ĵ
+
i Ĵ

−
j − 2Ĵz

i Ĵ
z
j ), (1.20)

where bkl are the dipolar couplings between the nuclei. For the present consideration,
their exact form does not matter, since they decay quickly with the distance between
nuclei k and l, rkl (as bkl ∝ 1/r3kl), and they are small compared to all the other
interaction energies in the Hamiltonian (i.e. hyperfine couplings). In experiments on
spin qubits, bkl≪kBT , and also ωα≪kBT , unless very high magnetic fields (B>10
T) are used. Hence, the equilibrium density operator of the nuclear spin bath is

ρ̂eqJ =
1

Z
1, (1.21)

where Z is the statistical sum of a bath, in the case of homonuclear spin bath
consisting of N nuclei of spin J it is given by Z=(2J + 1)N .

The next key fact about the system of the electron spin coupled to the nuclear
bath is that the electron’s Zeeman energy in the presence of external magnetic



1: Introduction: Entanglement and Spin Qubits 39

field B is much higher than that of a nuclear spin, so processes of simultaneous
correlated spin flips of electron and nucleus described by V̂ff , possible at zero or low
B, become suppressed with increasing external magnetic field. Presence of electron
in the system brings an alternative channel of intrabath interaction: virtual processes
of electron spin flip provide an effective coupling between two different nuclear spins,
i.e. electron and the first nuclear spin perform spin flip due to V̂ff , and right after
that the electron performs similar spin flip in a pair with another nucleus, so finally
electron spin is in its initial state, and spin flips are performed between two nuclear
spins [110, 111]. The energy scale of these interactions is also much less than kBT
[111], so the form of the equilibrium nuclear density matrix given above still holds.

The weakness of the internuclear interactions manifests also in the slowness of the
intrinsic dynamics of nuclear spin bath. In the presence of magnetic field B larger
than the magnetic resonance linewidth of nuclei [104] (caused by Ĵz

i Ĵ
z
j interactions in

Eq. (1.20)), i.e. for B≫0.1 mT, the dynamics of the longitudinal component of the
Overhauser field, hz, is much slower than that of the transverse components h⊥=hx,
hy. This is because the latter are proportional to the sum over Jx,y

k nuclear spin
components, which are undergoing precession with their Larmor frequencies, and
also the total hx,y fields decorrelate on time scale given by the inverse of the above-
mentioned linewidth. The resulting characteristic time scale of randomization of h⊥
fields is τ⊥∼100 µs. On the other hand, the dynamics of hz is governed by diffusion
of nuclear polarization (via nearest-neighbor flip-flops caused by Ĵ+

k Ĵ
−
l interactions

in Eq. (1.20)) out of the volume of the QD [112]. The flip-flops can occur only
between nuclear spins that are approximately resonant (i.e. they have the same
splittings due to the external B field and local fields generated by

∑
bijĴ

z
i Ĵ

z
j terms)

The characteristic time scale τ|| ∼ L2/D, where L is the size of the QD and D is
the nuclear diffusion constant. It is known from experiments that τ||∼10 s in GaAs
QDs [113, 114], which is in qualitative agreement with theory [112].

The relation between τ|| and τ⊥ and the time scale on which the electron spin
qubit coherence is measured has a nontrivial effect in the nuclear state ρ̂J that should
be used in calculation of electron spin dynamics. To reconstruct the electron spin
density operator, experimentalists gather data from multiple runs of manipulation
cycle containing initialization, manipulations and measurements of qubits’ states,
therefore, the whole process of data acquisition takes time TM . The seemingly
obvious choice of the thermal equilibrium state in the form of Eq. (1.21) is correct
if TM > τ|| (while τ|| ≫ τ⊥ according to the above considerations). This is because
when this condition is fulfilled, the dynamics of the nuclear bath is ergodic, i.e. the
time average over many instances of the same electron spin interacting with the
same bath can be replaced by an ensemble average, with the ensemble described by
ρ̂eqJ . On the other hand, employing the single-shot readout methods [115], one can
measure the electron spin precession dynamics on a time scale fulfilling TM ≪ τ||
(i.e. a few tens or a hundred milliseconds), but still much longer than τ⊥. Such
a fast measurement of spin precession detects the full spin splitting, EZ + hz, and
hence, allows to gather some information about the state of nuclear spin bath.
The correct nuclear bath state to be used in calculations aimed at reproducing the
results of such experiments is called the narrowed state [116, 117, 118, 119]. Such
states of QD nuclear spin baths were obtained in experiment [120, 121, 122]. In the
theoretical description of narrowed state free induction decay (NFID) experiments
[116, 110, 123, 111, 124, 125, 126], such states are described by a nuclear spin bath
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density operator that has a fixed value of hz or by a distribution of hz values which
is narrowed compared to that of the completely mixed nuclear bath state.

To build an intuition about the nuclear spin bath, one can attempt to treat
the Overhauser field classically. The distribution of the classical magnetic field h
corresponding to the above density operator from Eq. (1.21) is given by [127]

P (h) =
1

(2π)3/2σ3
h
exp

(
− h2

2σ2
h

)
, (1.22)

where

σ2
h =

∑
k

A2
k⟨(Ĵz

k )
2⟩eq =

1

3

∑
α

Jα(Jα + 1)nα
A2

α

N
, (1.23)

where the angle brackets ⟨...⟩eq denote averaging with respect to the nuclear density
operator from Eq. (1.21), and Jα is the magnitude of spin of α species. The standard
deviation σh gives the value of the typical Overhauser field, which affects the electron
spin interacting with a high-temperature nuclear bath.

Let us put all the above together. Experimentally established coherence time T ∗
2

(measured in the free induction decay experiment) of an electron spin in GaAs QD is
about 10 ns [128, 129, 130, 131]. This is much shorter time compared to all the above-
mentioned characteristic time scales of nuclear spin bath dynamics.This allows one to
apply the so-called quasistatic bath approximation (QSBA) as a starting point [132,
133, 108]: the state of the bath is treated as static on the time scale of electron spin
dynamics, sum of nuclear spin operator

∑N
i=1AiĴ is substituted by a classical vector

of Overhauser field h, and nuclear Zeeman energies are neglected, dipolar interaction
between the nuclear spins are ignored as well, i.e. the Hamiltonian becomes ĤQSBA

QD =

ĤZ + h · Ŝ. The dynamics of electron spin is next averaged over various states of
the nuclear spin bath, which account for changes of its state in different runs of
the experiment. In the limit of large number nuclear spins, unpolarized nuclear
spin bath (consisting, in general, of nuclear spins of a few species) can be described
by Overhauser field, the magnitude of which is distributed according to normal
distribution around zero mean, given above in Eq. (1.22).

In a high external magnetic field, B ≫ σh, when z axis is explicitly set by the
external field, the Hamiltonian can be further simplified: HQSBA

QD ≈ ĤZ+h
zŜz, which

allows to derive analytically the evolution of electron spin, e.g. the mean value of
x-component of electron spin initially oriented in x direction is given by ⟨Sx(t)⟩ =
1
2

∫
V
P (h) cos((EZ + hzt)dh = 1

2
cos(EZt) exp

(
−
(

t
T ∗
2

)2)
, where T ∗

2 =
√
2

σh
∝

√
N
A . It

has been is argued that results obtained within quasistatic bath approximation are
trustworthy up to time t≪ N

A [108].
In the above-introduced case of narrowed state FID (NFID), one can attempt

a similar calculation, but with an anisotropic normal distribution Pn(h) in which
the rms of the hz component (the slowest component of the Overhauser field), σz,n

h

is smaller than its “natural” value σh from Eq. (1.23). The rms of distributions
of hx and hy components should remain the same as before. An example of such
calculation for NFID is given in Ref. [108].

It should be noted that QSBA gives unphysical predictions in low magnetic
fields, B ≪ σh, at which decay of averaged electron spin component is incomplete,
but taking into account a realistic shape of electron’s wave function the predictions of
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QSBA can be improved [134, 135, 136, 137, 138]. It has been shown that predictions
of QSBA at low fields are correct on a time scale of T ∗

2 at least [134].
A few approaches other than the nuclear state narrowing (which is quite non-

trivial as one has to perform single-shot measurements and quickly analyze the data
obtained from them) have been proposed in order to extend electron spin coherence
time, such as dynamical decoupling of electron spin from nuclear spin bath or making
use of fully polarized nuclear spin bath. The former proposition [139, 140] is based
on the manipulation technique developed in the nuclear magnetic resonance (NMR),
which suggests to perform sequences of electron spin rotations (e.g. Carr–Purcell–
Meiboom–Gill sequence, consisting of so-called π pulses, i.e. rotations of spin state
by π around chosen axis separated by periods of free evolution), which remove the
quasistatic influence of interaction of electron spin with nuclear spin bath and as a
result help to preserve the electron spin coherence for a longer time. The simplest
example of an experiment using π pulses is the spin-echo experiment, in which a
single pulse is applied at the mid-point of evolution. The latter method is based on
the observation that when nuclear spin bath is fully polarized the nuclear flip-flop
process are effectively blocked, since total spin must be conserved, hence, nuclear
spin bath is practically locked in that state and dephases the electron spin much
slower (flip-flop processes between electron spin and nuclear spins are still possible,
but they produce a small effect) [141, 142, 143].

Finally, it should be noted that when spin echo or dynamical decoupling is applied
to the electron spin, one has to consider the dynamics of the nuclear bath that
occurs on the time scale of electron spin coherence dynamics, which in such a case
is lengthened compared to T ∗

2 , i.e. take into account the nuclear evolution caused by
dipolar interactions, or electron-mediated interactions. This dynamics causes that
the energy splitting of the electron spin undergoes the so-called spectral diffusion due
to fluctuations of the Overhauser field. For example, the dipolar interaction enables
a flip-flop process between any pair of nuclear spins (term bijĴ

+
i Ĵ

−
j ), which changes

the expectation value of the Overhauser operator ĥz by the amount Ai − Aj, since
the hyperfine couplings are different, Ai ̸= Aj, and consequently the electron spin
precesses in a slowly varying magnetic field (see Ref. [144] and references therein
on many-body methods used to calculate the echo signal in this regime). From
experimentalist’s point of view, it looks as electron precession frequency fluctuates
in a constant external magnetic field. For the echo procedure applied to electron
spins dephased by nuclear baths at rather low magnetic field, which is considered
in Chapter 2, this dynamics can be neglected, since the direct flip-flop processes
between an electron spin and nuclear spins are a much stronger source of electron’s
decoherence.

1.3.4 1/f noise affecting spin qubits

Qubits which are controlled electrically through voltages applied to the gates of
semiconductor devices (e.g. S-T0 qubits) are susceptible to the fluctuations of electric
field in the vicinity of the QDs. Fluctuations of electric field (so-called charge noise)
may be produced by several kinds of sources (impurities, fluctuating background
charges, etc.). In many devices, a noise whose spectral density (i.e. the Fourier
transform of noise autocorrelation function) is of 1/f -type has been detected [145].
Although there is still lack of the complete clarity about the origin of the 1/f noise,
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and moreover there are numerous evidences that in different physical systems, its
physical origins are essentially unlike, the 1/f noise is viewed as an effect of a
large number of two-level fluctuators which switching times are distributed over a
broad range [145]. For example, when there are two-level fluctuating background
charges in the system, which are switching randomly between two states (i.e. they
are sources of so-called Random Telegraph Noise, the autocorrelation function has
an exponential form), one can assume that their spectral density functions are given
by Lorenzians, and their total power spectrum is therefore [146]

SBC(ω) =
1

2ℏ2
∑
i

v2i
2γi

ω2 + γi
,

where vi is the coupling strength of the fluctuator i, γi is the switching rate of the
fluctuator i. Due to the fact that the number of fluctuators in the system is rather
large, one should average the power spectrum SBC(ω) over the distribution P (v, γ)
of coupling strengths vi and switching rates γi,

SBC(ω) ∝
∫∫

dvdγP (v, γ)v2
2γ

ω2 + γ2
.

Models of microscopic origins of 1/f noise have been presented in Refs. [147, 148],
where several different fluctuator distribution functions have been studied. In the
simplest case, when the switching rates have a log-uniform distribution, i.e. assuming
γ ∝ exp

(
− l

l0

)
, where l can be interpreted as a tunneling distance for charges and

supposing that the distribution of l is uniform in a range much wider than the
characteristic distance l0, one obtains [146]

SBC(ω) ∝ v2

∞∫
−∞

dl
2γ(l)

ω2 + γ2(l)
∝ v2

∞∫
−∞

dγ

γ

2γ

ω2 + γ2
∝ v2

|ω|
,

where v2 is the averaged squared coupling. Similar power spectrum can be obtained
as a low-frequency limit of interaction with an oscillator bath [146]. It has also been
shown that 1/f noise can be produced by a set of coherent two-level systems [146].

Stochastic (or random) process corresponding to the 1/f noise is generally non-
Gaussian [149], i.e. its higher-order moments cannot be reduced exclusively to its
second-order moment (pair correlations) [145]. However, when coupling to noise is
weak, the Gaussian approximation gives satisfactory predictions (even for a single
two-state fluctuator the Gaussian approximation is acceptable in the weak coupling
limit [150]). It is worth to note that a stochastic process of 1/f type cannot be
considered as a Markovian random process [145]. The next issue about 1/f noise
remaining unsettled is the resolution if 1/f noise is a stationary stochastic process,
i.e. if the translated in time process produces the same effect on the physical system
it is affecting [145]. Of particular interest is establishing the lower frequency limit of
1/f noise and estimation of noise power in the vicinity of zero frequency, which need
to be done for each device individually as they vary in different physical systems
and are even sample-dependent. It turns out that deviations of the functional form
of the spectral density are frequent, i.e. it is not exactly 1/f but rather 1/fβ with
0 < β ≲ 2 (e.g. β ≈ 0.7 has been reported for S-T0 qubits [151]).
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1.4 Motivation and Aims
Due to the fact that quantum features manifest to the greatest extent in entangled
quantum states, such states are the most interesting ones for theoretical consider-
ations [6] as well as for experimental verifications of quantum supremacy [152] and
practical applications in quantum technologies. Therefore, a resolution of the issue
of creation of entangled states as well as keeping the system in an entangled state
as long as needed for execution of the intended operations is a basic requirement.

To be specific, the aims of this dissertation were:

• to investigate theoretically the decay of entanglement in the system of two
electron spin QD qubits taking into account various experimentally accessible
states of nuclear spin baths (see Chapter 2);

• to explore the way of inhibition of entanglement decay of two electron spins
interacting with the nuclear spin bath by execution of an experimentally un-
demanding manipulation sequence with electrons subsystem only (see Chap-
ter 3);

• to estimate the amount of entanglement that can be obtained in the system
of two singlet-triplet qubits taking into account fluctuations of key system
parameters observed in the experiment (see Chapter 4).
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Chapter 2

Dynamics of Decay of Two
Electron-Spin Qubits Entanglement

This chapter is devoted to the analysis of the dynamics of en-
tanglement of two electron spins in two QDs, in which each elec-
tron is interacting with its nuclear spin environment. The decay
of entanglement due to the hyperfine interaction with the nu-
clei is calculated for uncoupled dots, in which electron spins
are initialized in either Bell or Werner state. The study is
focused on the regime of magnetic fields in which the bath-
induced electron spin flips play a role, for example, their pre-
sence leads to the appearance of entanglement sudden death
at finite time for two qubits initialized in a Bell state. In such
fields, the intrabath dipolar interactions and spatial inhomo-
geneity of hyperfine couplings are irrelevant on the time scale
of coherence (and entanglement) decay, so the presented results
are obtained using the uniform-coupling approximation to the
exact hyperfine Hamiltonian. The entanglement decay is ana-
lyzed in the case of free evolution of the qubits as well as in two-
qubit spin echo procedure. The experimentally relevant bath
states are considered: the thermal state, narrowed states (cha-
racterized by diminished uncertainty of one of the components
of the Overhauser field) of two uncorrelated baths, and a cor-
related narrowed state with a well-defined value of the z com-
ponent of the Overhauser field interdot gradient. In most cases
the concurrence is used to quantify the amount of entangle-
ment in a mixed state of the two electron spins, but it is also
shown that their entanglement dynamics can be reconstructed
from entanglement witnesses that are easy to measure or from
the fidelity of quantum teleportation in which a partially disen-
tangled state is used as an entanglement resource. The results
contained in this chapter have been presented at a few conferen-
ces (see List of Conference Presentations on p. 129) and have
been published in Phys. Rev. B [1].
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2.1 Introduction

In this chapter, section 2.2 contains the description of a system of electron spin in
a semiconductor QD. The relevant for experiment states of the nuclear spin bath are
discussed there. The general formalism used for description of the time evolution
of two-qubit state is presented in section 2.3. Next, the approximation schemes
used for the calculation of two-qubit state evolution are introduced is section 2.4.
Finally, the results are shown in section 2.5, where decay of entanglement of two
electron spins interacting either with two uncorrelated nuclear spin baths in the
state of thermal equilibrium (Sec. 2.5.2), in narrowed states (Sec. 2.5.3.1), or with
baths in the correlated narrowed state (Sec. 2.5.3.2). The qubits are supposed to
be initially in a state from the family of Bell-diagonal states (one of the pure Bell
states or the Werner state). To quantify the amount of entanglement of possibly
mixed two-qubit state, the concurrence [21] is used. The signal of two-qubit spin
echo procedure is shown in section 2.5.4. After noting the general features of the
disentanglement of considered electron spin qubits, another ways for entanglement
quantification are discussed in section 2.5.5, such as expectation values of easy-to-
implement (for certain spin qubit systems) entanglement witnesses [153, 154] and
the fidelity of a teleported qubit state obtained after execution of the quantum
teleportation protocol [155, 156, 157, 158], in which a partially disentangled two-
qubit state is used as a resource. The conclusions of the study presented in this
chapter are given is section 2.6.

2.2 The Physical System and the Model

2.2.1 Hamiltonian of electron spin in a QD

The system consisting of an electron spin interacting with nuclear spins in a QD via
contact hyperfine coupling (see Sec. 1.3.2) is described by the Hamiltonian

Ĥ = ΩŜz +
∑
k

AkŜ · Ĵk, (2.1)

where Ŝ and Ĵk are the spin operators of the electron and the kth nuclear spin,
respectively, Ak is the hyperfine coupling to the spin of the kth nucleus, and Ω=
gµBB is the electron spin Zeeman splitting, where g is the effective g-factor of the
electron in a QD, µB is the Bohr’s magneton, B is the external magnetic field. In III-
V semiconductor QDs, atoms’ nuclei possess spin (nuclei of various isotopes of Ga,
As, In, etc., are spinful). The hyperfine coupling for the nuclear spin of species α
located at site k is Ak=Aα|F (rk)|2, where α labels different species of nuclear spins,
F (rk) is the envelope function of the localized electron state, and Aα is the energy
of hyperfine interaction characteristic for a nuclear spin of kind α of an atom in a

The publisher of Ref. [1], the American Physical Society (APS), permits to use the materials
of published articles in authors’ dissertations: “The author has the right to use the article or
a portion of the article in a thesis or dissertation without requesting permission from APS, provided
the bibliographic citation and the APS copyright credit line are given on the appropriate pages.”
(see https://journals.aps.org/copyrightFAQ.html#thesis).

https://journals.aps.org/copyrightFAQ.html#thesis
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crystal lattice. As mentioned in Sec. 1.3.2 (Eq. (1.18)), the interaction term of the
Hamiltonian Eq. (2.1) can be written using the Overhauser field operator ĥ.

The effective number N of nuclear spins coupled to the electron spin is defined
as

1

N
:=
∑
u

|F (ru)|4, (2.2)

where u labels the primitive unit cells, and the envelope function F (r) is approxi-
mately constant inside each cell.

2.2.2 Possible states of the nuclear spin bath

As discussed in Sec. 1.3.3, depending on details of procedure of measurement of
coherence of an electron spin interacting with the nuclei, various states of nuclei
should be used. In some cases, using the completely mixed state of the nuclear
system is justified. In others, one should employ the narrowed states, with dimin-
ished variance of the z component of the Overhauser operator, and possibly with
finite polarization along this axis. To describe these bath states, one can use the
basis of product Jz eigenstates of individual nuclear spins, where Ĵz

k |χ⟩ = Jz
k |χ⟩,

and |χ(hz)⟩ is defined as a state corresponding to a given eigenvalue hz of ĥz. Due
to the finiteness of the nuclear spin environment, values hz are from a discrete spec-
trum. The number M(hz) of states |χ(hz)⟩, which realize the same value hz, is
finite, so these states |χi(h

z)⟩ can be labelled with index i ∈ [1,M(hz)]. Using such
a notation, one can express a partially narrowed state of the nuclear spin bath as

ρ̂J(h̄
z, σn) =

1

Z

∑
hz

ph̄z ,σn
(hz)

∑
i

|χi(h
z)⟩ ⟨χi(h

z)| , (2.3)

where ph̄z ,σn
(hz) is a function which reaches its maximum at h̄z with the width

σn ≪ σh, and the normalization constant Z =
∑

hz M(hz)ph̄z ,σn
(hz). In the limit

of perfect narrowing, one has ph̄z ,σn
(hz) = δh̄z ,hz . The density operator ρ̂J(h̄z, σn)

lacks the off-diagonal elements, which is a consequence of the realistic assumption
that a series of measurements is performed on a time scale much larger than τ⊥,
and the final result is derived from the that series as an average (see discussion in
Sec. 1.3.3).

Provided no manipulations intended for the creation of correlations between the
nuclear baths in the two QDs are performed, the states of the nuclear spin baths
of QDs are uncorrelated, and the total initial density operator of the environment is

ρ̂J = ρ̂AJ (0)⊗ ρ̂BJ (0), (2.4)

where the density matrices corresponding to nuclear bath states in QDs A and B
are given either by Eq. (1.21) or Eq. (2.3). In a DQD system, it is also possible
to create a narrowed distribution of Overhauser field difference between the QDs
[159, 120, 122], which corresponds to a correlated state of the two nuclear spin
environments with a diminished uncertainty of ∆hz :=hzA − hzB:

ρ̂AB(∆h
z, σn) =

1

ZAB

∑
hz
A,hz

B

pAB

(
hzA − hzB, σn

)
×
∑
i,j

(
|χi(h

z
A)⟩ ⟨χi(h

z
A)|
)
⊗
(
|χj(h

z
B)⟩ ⟨χj(h

z
B)|
)
, (2.5)
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where pAB has its maximum at ∆hz, while its width is σn≪σh, and

ZAB=
∑
hz
A,hz

B

MA(h
z
A)MB(h

z
B)pAB

(
hzA − hzB

)
. (2.6)

The above density operator can also be written as

ρ̂AB(∆h
z, σn) =

∑
hz
A,hz

B

w(hzA; ∆h
z)ρ̂A(h

z
A)⊗ ρ̂B(h

z
B), (2.7)

where ρ̂Q(hzQ) is the perfectly narrowed state for dot Q and the weights

w(hzA; ∆h
z) = pAB

(
hzA − hzB, σn

)
MA(h

z
A)MB(h

z
B=hzA+∆hz)/ZAB. (2.8)

2.3 Time Evolution of Two-Qubit State in QDs
It is important to note explicitly the two assumptions which are used in the model.
The first assumption is that at initial time there are no any correlations between
the qubits’ subsystem and their environments, i.e. ρ̂(0) ⊗ ρ̂J(0), where ρ̂(0) is the
initial density operator of the qubits. The second one is that there is no interaction
between the two electron spins (because of the strong localization of electrons in
their QDs, the overlap of the electrons’ wave functions is negligible), and the two
nuclear environments are well-separated (each nuclear spin interacts with only one
electron). Hence, the total Hamiltonian of the system is of the separable form
ĤA⊗1B +1A⊗ ĤB, where ĤQ is the Hamiltonian which describes the electron and
the nuclear spins of dot Q.

2.3.1 Free evolution

The Hamiltonian ĤQ, containing of the hyperfine interaction part, Eq. (2.1), and the
intrabath dipolar interaction part, Eq. (1.20), has a property that the z projection
of the total spin is conserved in the system[

ĤQ, Ŝ
z
Q +

∑
k∈Q

Ĵz
k

]
= 0. (2.9)

To make use of that property, it is convenient to introduce projection operators
Πm,σ := P̂σσΠ̂m, where operator P̂σσ′ := |σ⟩ ⟨σ′|, with σ=σ′ here, projects on the sub-
space of a given electron spin Sz = σ/2 (where σ=±1), and operator Π̂m projects
on the subspace of the fixed total z component of the nuclear spin, i.e. the subspace
of states |χ(m)⟩, which fulfills the condition

∑
(k)Ĵz

k |χ(m)⟩=m |χm⟩. These pro-
jection operators allow to express an important feature of the evolution operator
ÛQ(t) := exp(−iĤQt) (note that it is assumed here ℏ=1):

Πm,σÛQ(t)Πm′,σ′ = δm+σ/2,m′+σ′/2Πm,σÛQ(t)Πm′,σ′ . (2.10)

This means that during evolution the states in the {σ,m} and {σ̄,m+ σ/2} (where
σ̄ ≡ −σ) subspaces are coupled, so the whole state space of the system consists
of a number of decoupled subspaces which differ in their z projection of the total
spin.
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In general, the evolution of the two-qubit density operator can be expressed as

ραβ,γδ(t) =
∑

α′β′γ′δ′

Rα′β′γ′δ′

αβγδ (t) ρα′β′,γ′δ′(0), (2.11)

where
Rα′β′γ′δ′

αβγδ (t) := TrJ

(
⟨αβ| Û(t) |α′β′⟩ ρ̂J(0) ⟨γ′δ′| Û †(t) |γδ⟩

)
, (2.12)

and Û(t) := ÛA(t)⊗ÛB(t) is the evolution operator of the system (|αβ⟩ := |α⟩A⊗|β⟩B
is the two-qubit state).

To begin with, a general density operator of the environment ρ̂J , Eq. (2.5),
will be considered. For now, in that density operator p(hzA − hzB) will be replaced
by p(hzA, hzB), to embrace a broad class of possibly correlated environmental states.
Using Eq. (2.10) and taking into account the fact that ΠmQ

ρ̂JΠnQ
∝ δmQnQ

, one
obtains

Rα′β′γ′δ′

αβγδ (t) ≡ δαα′δββ′δγγ′δδδ′R
αβγδ
αβγδ(t)

+ δαα′δβ̄β′δγγ′δβδδβ̄δ′R
αβ̄γβ̄
αβγβ(t)

+ δᾱα′δββ′δδδ′δαγδᾱγ′Rᾱβᾱδ
αβαδ(t)

+ δαγδᾱα′δᾱγ′δβδδβ̄β′δβ̄δ′R
ᾱβ̄ᾱβ̄
αβαβ(t). (2.13)

In that expression, one can explicitly see how the constraints on the nuclear density
operator discussed in Sec. 2.2.2 and the conservation law Eq. (2.9) reduce the num-
ber of evolution functions R, which are necessary for the description of two-qubit
dynamics.

If the baths are uncorrelated, then one can express the functions R defined in
Eq. (2.12) using the functions which are derived for description of the evolution
of a single qubit interacting with its bath [160, 161]. The evolution of qubit Q can
be described as:

ρQσσ′(t) = TrJ

(
⟨σ| ÛQ(t)ρ̂

Q(0)⊗ ρ̂QJ (0)Û
†
Q(t) |σ

′⟩
)
,

=
∑
ξ,ξ′

TrJ

(
⟨σ| ÛQ(t) |ξ⟩ ρ̂QJ (0) ⟨ξ

′| Û †
Q(t) |σ

′⟩
)
ρQξξ′(0),

=:
∑
ξ,ξ′

KQ
σξ,ξ′σ′(t) ρ

Q
ξξ′(0), (2.14)

where KQ
σξ,ξ′σ′(t) encapsulates the influence of the environment on the evolution

of the reduced density operator of qubit Q. It is worth to notice that the above
representation [160, 161, 162] is closely related to the operator-sum (Kraus) rep-
resentation of evolution of ρ̂Q. The use of functions R it is much more convenient
when the number of relevant Kraus operators is large (as in the present case). The K
functions, in turn, consist of two terms:

Kσξ,ξ′σ′ ≡ δσξδσ′ξ′K
σσ′

a + δσσ′δσξ̄δσξ̄′K
σ
b , (2.15)

with

Kσσ′

a :=
∑
m

Tr
(
P̂σ′σΠmÛΠmP̂σσ′ρJΠmÛ

†
)
, (2.16)

Kσ
b :=

∑
m

Tr
(
P̂σσΠmÛΠm+σ/2P̂σ̄σ̄ρJΠm+σ/2Û

†
)
, (2.17)
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where for shortness of notation the time dependence of Ka/b(t) and Û(t) has not
been explicitly written. In terms of the K functions, elements of the single electron
density operator are described as

ρQσσ(t) = KQ,σσ
a (t) ρQσσ(0) +KQ,σ

b (t) ρQσ̄σ̄(0), (2.18)
ρQσσ̄(t) = KQ,σσ̄

a (t) ρQσσ̄(0), (2.19)

where one can see that the dynamics of coherences (ρ+− = ρ∗−+) is not affected by
the dynamics of the populations (ρ++ and ρ−−). This fact has been noted for the
first time in Ref. [116]. Moreover, from the conservation of the total population,
ρ++ + ρ−−≡1, one has the relation KQ,σ

b (t)=1−KQ,σ̄σ̄
a (t).

Similarly, one can derive the expression for time evolution of the two-qubit re-
duced density operator in the case of uncorrelated nuclear baths:

ρσAσB ,σ′
Aσ′

B
(t) =

∑
ξA,ξB ,ξ′A,ξ′B

ρξAξB ,ξ′Aξ′B(0)K
A
σAξA,ξ′Aσ′

A
(t)KB

σBξB ,ξ′Bσ′
B
(t), (2.20)

and using Eq. (2.15) one obtains the specific form of R function, in which the four
terms on the RHS of Eq. (2.13) are given by KA,αγ

a KB,βδ
a , KA,αγ

a KB,δ
b , KA,α

b KB,βδ
a ,

and KA,α
b KB,β

b , respectively.
Finally, by employing the above formulas, one obtains the diagonal elements

of the two-qubit density operator,

ρσξ,σξ(t) = KA,σσ
a KB,ξξ

a ρσξ,σξ(0) +KA,σσ
a KB,ξ

b ρσξ̄,σξ̄(0)

+KA,σ
b KB,ξξ

a ρσ̄ξ,σ̄ξ(0) +KA,σ
b KB,ξ

b ρσ̄ξ̄,σ̄ξ̄(0), (2.21)

where for shortness of notation the time-dependence of K(t) functions has not been
explicitly written.

It is important to notice that off-diagonal elements corresponding to the cohe-
rences between the states differing by a single spin-flip depend on themselves and
their hermitian-conjugated partners

ρσξ,σξ̄(t) = KA,σσ
a KB,ξξ̄

a ρσξ,σξ̄(0) +KA,σ
b KB,ξξ̄

a ρσ̄ξ,σ̄ξ(0),

ρσξ,σ̄ξ(t) = KA,σσ̄
a KB,ξξ

a ρσξ,σ̄ξ(0) +KA,σσ̄
a KB,ξ

b ρσξ̄,σ̄ξ̄(0), (2.22)

and the coherences between the states differing by two spin flips depend on them-
selves only

ρσξ,σ̄ξ̄(t) = KA,σσ̄
a KB,ξξ̄

a ρσξ,σ̄ξ̄(0) . (2.23)

The electron spin structure of Eqs. (2.21)–(2.23) remains the same also in the
general case described by Eqs. (2.11) and (2.13), in which the interbath correlations
are allowed. In connection to that, it is worth to make a remark on the initial states
of the qubits described by a density operator diagonal in the basis of Bell states,
which will be analyzed in detail below. In the product basis |σAσB⟩, this matrix has
nonzero populations, and nonzero coherences between the states differing by two
spin flips (nonzero values are only on the diagonal and the antidiagonal, i.e. it is
of the X form), and from the equations of motion Eqs. (2.21)–(2.23) it is clear that
initial X form is preserved at all times.

Below the two-qubit density operator is presented, where in its upper half the
elements which mix with each other during the evolution are marked with different
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colors: populations ρ11, ρ22, ρ33, ρ44 (black) constitute the group whose elements
depend on all elements of the group, coherences ρ12, ρ34 (red) and ρ13, ρ24 (green)
constitute similar groups, whereas coherences ρ14 and ρ23 are independent, i.e. they
depend only on their initial values. The structure of the coherences in the lower
part is analogous to that of the upper one (due to that fact, they are presented in
gray in order to not encumber the picture).

ρ̂free ev. =

|++⟩ |+−⟩ |−+⟩ |−−⟩


ρ11 ρ12 ρ13 ρ14 ⟨++|
ρ21 ρ22 ρ23 ρ24 ⟨+−|
ρ31 ρ32 ρ33 ρ34 ⟨−+|
ρ41 ρ42 ρ43 ρ44 ⟨−−|

2.3.2 Spin echo

The spin echo protocol, which rephases qubits and removes inhomogeneous broade-
ning, does not help much in the case of narrowed bath states, so in this subsection
only the thermal state of uncorrelated baths will be considered.

In the protocol, a π rotation of qubit state (assumed to be a perfect rotation by
π around the x axis, for concreteness) is performed to each qubit at time τ , and the
qubits’ coherence is measured at time 2τ . The corresponding evolution operator ÛQ

in Eq. (2.14) reads

ÛSE
Q (2τ) = e−iĤQτ (−iσ̂x)e−iĤQτ . (2.24)

After application of spin echo procedure it is expected that maximal revival of the
coherence will be observed at time 2τ . Using these functions, which are derived using
the above evolution operator, one can obtain the 2τ -dependence (i.e. the dependence
on the total duration of the echo sequence) of the two-qubit reduced density operator.

To see the dependence of the echo signal as a function of the durations of the
free evolution periods τ1 and τ2, one can rewrite the evolution operator as

ÛSE
Q (τ1, τ2) = e−iĤQτ2(−iσ̂x)e−iĤQτ1 , (2.25)

The recovery of the signal is expected for τ1≈τ2.
Therefore, one can obtain Kσξ,ξ′σ′ functions with either a single argument of 2τ

(the total duration of the sequence with π rotation at instant τ) or two arguments τ1
and τ2. The structure of the functions is identical in both cases, under the natural
assumption that τ2>0, but it is richer than the structure of K(t) functions derived
for the case of free evolution. Now the K functions are of the form

Kσξ,ξ′σ′ ≡ δσξ̄δσ′ξ̄′K
σσ′

a + δσσ′δσξ̄δσξ̄′K
σ
b

+ δσσ′δσξδσξ′K
σ
c + δσσ̄′δσξδσξ̄′K

σ
d , (2.26)

where
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Kσσ′

a :=
∑
m

Tr(P̂σ′σÛ
m,m
2 P̂σσ̄Û

m,m
1 P̂σ̄σ̄′ ρ̂J(Û

†
1)

m,mP̂σ̄′σ′(Û †
2)

m,m), (2.27)

Kσ
b :=

∑
m

Tr(P̂σσÛ
m,m+σ
2 P̂σ̄σÛ

m+σ,m+2σ
1 P̂σ̄σ̄ρ̂J(Û

†
1)

m+2σ,m+σP̂σσ̄(Û
†
2)

m+σ,m),

(2.28)

Kσ
c :=

∑
m

Tr(P̂σσÛ
m,m
2 P̂σσ̄Û

m,m−σ
1 P̂σσρ̂J(Û

†
1)

m−σ,mP̂σ̄σ(Û
†
2)

m,m)

+
∑
m

Tr(P̂σσÛ
m,m+σ
2 P̂σ̄σÛ

m+σ,m+σ
1 P̂σσρ̂J(Û

†
1)

m+σ,m+σP̂σσ̄(Û
†
2)

m+σ,m), (2.29)

Kσ
d :=

∑
m

Tr(P̂σ̄σÛ
m,m
2 P̂σσ̄Û

m,m−σ
1 P̂σσ̄ρ̂J(Û

†
1)

m−σ,m−σP̂σ̄σ(Û
†
2)

m−σ,m)

+
∑
m

Tr(P̂σ̄σÛ
m,m+σ
2 P̂σ̄σÛ

m+σ,m+σ
1 P̂σσ̄ρ̂J(Û

†
1)

m+σ,mP̂σσ̄(Û
†
2)

m,m), (2.30)

where the U operators are defined as Ûn,m
1/2

:= Π̂nÛ(τ1/2)Π̂m and (Û †
1/2)

n,m :=

Π̂nÛ
†(τ1/2)Π̂m.

The structure of ρ̂(2τ) is now more complicated compared to that of the free
evolution case. Each diagonal element ρσξ,σξ(2τ) still depends only on the initial
values of all diagonal elements,

ρσξ,σξ(2τ) = KA,σ
b KB,ξ

b ρσξ,σξ(0)

+
(
KA,σ

b KB,ξξ
a +KA,σ

b KB,ξ
d

)
ρσξ̄,σξ̄(0)

+
(
KA,σσ

a KB,ξ
b +KA,σ

d KB,ξ
b

)
ρσ̄ξ,σ̄ξ(0)

+
(
KA,σσ

a KB,ξξ
a +KA,σσ

a KB,ξ
d

+ KA,σ
d KB,ξξ

a +KAσ
d KB,ξ

d

)
ρσ̄ξ̄,σ̄ξ̄(0), (2.31)

but the coherences behave differently compared to the case of free evolution.
Any off-diagonal element of the density operator with a single flip depends now

on the initial values of all similar elements, and the same holds for the off-diagonal
elements with two spin flips, but these two groups of coherences are still disjoint.

The decay of entanglement of Bell states is a consequence of dynamics of occu-
pations and two-spin-flip coherence, so it is instructive to write out explicitly the
formula for the latter:

ρσξ,σ̄ξ̄(2τ) = KA,σ
c KB,ξ

c ρσξ,σ̄ξ̄(0) +KA,σ
c KB,ξξ̄

a ρσξ̄,σ̄ξ(0)

+KA,σσ̄
a KB,ξ

c ρσ̄ξ,σξ̄(0) +KA,σσ̄
a KB,ξξ̄

a ρσ̄ξ̄,σξ(0). (2.32)

As can be seen from the above formulas Eqs. (2.26)–(2.32), the exact dynamics is
more complicated than in the free evolution case, but a state initialized in an X
form again retains this structure throughout the evolution.

Below the two-qubit density operator is presented, where the elements which mix
during the evolution are marked with different colors: populations ρ11, ρ22, ρ33, ρ44
(black) constitute the group whose elements depend on themselves only, coherences
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ρ12, ρ34, ρ21, ρ43 (red), ρ13, ρ24, ρ31, ρ42 (green), and ρ14, ρ23, ρ32, ρ41 (blue)
constitute similar separated groups.

ρ̂echo =

|++⟩ |+−⟩ |−+⟩ |−−⟩


ρ11 ρ12 ρ13 ρ14 ⟨++|
ρ21 ρ22 ρ23 ρ24 ⟨+−|
ρ31 ρ32 ρ33 ρ34 ⟨−+|
ρ41 ρ42 ρ43 ρ44 ⟨−−|

2.4 Approximation Schemes for the Model
One simple method which allows to account the impact of nuclear spin bath on the
electron spin dynamics, namely QSBA, was discussed in the Introduction (Sec. 1.3.3).
Here, I concentrate on the approximations that explicitly account for the hyperfine
interaction with a nuclear spin bath.

2.4.1 Effective two-spin approximation

In moderate external magnetic field, the V̂ff term plays an important role. At some
Ω (corresponding to B ≈ 0.5 T in GaAs QDs and in lower magnetic fields when
spin echo decay is considered [140]) the influence of ĥ⊥ becomes a dominant source
of decoherence, and the dipolar-induced fluctuations of ĥz are of minor importance.
The purely hyperfine-induced decoherence of electron spin in the regime of moderate
B fields has been studied using various approaches [116, 110, 123, 163, 164, 111, 124,
165, 166, 125, 126]. Here, I concentrate on such fields which cause the decay of NFID
or echo signal on time scale t≪ 1/Amax, where Amax is the maximal value of the
hyperfine coupling Ak. In III-V QDs, for which there is a nuclear spin at every lattice
site, and for which all the Aα have similar values, one has 1/Amax≈N/A≈10 µs for
N =106. Using the time-energy uncertainty, one can infer that for t≪ 1/Amax the
exact shape of Ak distribution is irrelevant, allowing us to take all the Ak couplings
to be the same. When one considers a regime of t ≪ mink,l[1/(ωk − ωl)], where
ωk and ωl are Zeeman splittings of distinct nuclei (this condition is also easier to
fulfill at low B), the presence of multiple nuclear species can be neglected, and one
may treat the nuclear spin bath as a large single spin Ĵ=

∑N
k=1 Ĵk. The advantage

of these approximation is that such a uniform coupling (UC) model can be easily
solved exactly both in the case of free evolution, including NFID [125], and in the
case of spin echo [165] for practically any N , and for any value of Ω, including Ω=0.
From the point of view of investigation of entanglement dynamics it is important that
this method allows for calculation of all the components of ρ̂(t), since certain features
of entanglement decay, for example the presence or absence of entanglement sudden
death (ESD) [167, 168] when one of the Bell states is considered, can be captured
only with a theoretical approach that accurately describes the changes of qubit’s
populations. On longer time scales, an approach that takes into account the presence
of distinct nuclear species and/or the inhomogeneity of hyperfine couplings becomes
necessary, e.g. the effective pure dephasing Hamiltonian approach [164, 111], which
has been experimentally verified [140].

It is worth to mention that the same approximation has been used also for
a similar Hamiltonian describing an electron bound on a defect in a crystal with
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localized spin moments of ions [169].

2.4.1.1 Free evolution

To calculate the two-qubit density operator, one has to choose a method of appro-
ximate calculation of K(t) functions (or R(t) functions in the case of correlated
baths). At low magnetic fields the uniform coupling (UC) model, in which all Ak

couplings are assumed to be the same (all equal to A/N), is suitable. Moreover,
it is assumed here that all the nuclei have the same Zeeman splitting ω, so nuclear
spins can be aggregated in a single nuclear macrospin Ĵ =

∑N
k=1 Ĵk. As discussed

above in Sec. 2.4.1, this approximation is expected to be justified at low fields, at
which the coherence decays on time scale t≪N/A, mink,l[1/(ωk − ωl)].

After replacing the nuclear operators by a collective angular momentum ope-
rator Ĵ, one can use the basis of collective nuclear spin states |ζ, j,m⟩, for which
Ĵ2 |ζ, j,m⟩=j(j + 1) |ζ, j,m⟩ and Ĵz |ζ, j,m⟩=m |ζ, j,m⟩, and where ζ is the quan-
tum number accounting for the number of different possibilities to add N spins
producing a total spin j. The single QD Hamiltonian

ĤUC = ΩŜz + ωĴz +
A
N
Ŝ · Ĵ (2.33)

couples states only in pairs:

e−iĤUCt |σ; ζ, j,m⟩ ≡ ajmσ(t) |σ; ζ, j,m⟩
+ bjmσ(t) |σ̄; ζ, j,m+ σ/2⟩ , (2.34)

therefore, the subspaces of fixed j and ζ are decoupled of each other. As explained in
Sec. 2.2.2, the nuclear density operator is diagonal in the basis of eigenstates of Ĵz,
so that it can be written as

ρ̂J =
1

Z

∑
j,m,ζ

pm |ζ, j,m⟩ ⟨ζ, j,m| , (2.35)

where pm are the appropriate weights (i.e. pm = 1 for the thermal state and pm =
δmm0 for narrowed state), and Z is the statistical sum. Recalling the fact that
the Hamiltonian is diagonal in ζ quantum numbers, it is possible to perform the
summation over them right away:

ρ̂J =
1

Z

∑
jm

njpm |j,m⟩ ⟨j,m| , (2.36)

where nj is the number of subspaces with given j (see Appendix (p. 119)).
With the above nuclear density operator, using Eq. (2.34) and the results given

in Section 2.3, one can obtain the explicit form of K functions in the case of free
evolution:

KQ,σσ′

a (t) =
1

Z

∑
jm

nja
Q
jmσ(t)

(
aQjmσ′(t)

)∗
, (2.37)

KQ,σ
b (t) =

1

Z

∑
jm

nj|bQjmσ̄(t)|2. (2.38)
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In the case of correlated baths described by a density operator from Eq. (2.5),
within the UC approximation hzQ = mQA/NQ, one obtains

Rα′β′γ′δ′

αβγδ (t) =
1

Z

∑
mA−mB=∆m

∑
jA, jB

njAnjB

×
(

ajAmAα′ajBmBβ′a∗jAmAγ′a∗jBmBδ′δαα′δββ′δγγ′δδδ′

+ ajAmAα′a∗jAmAγ′|bjBmBβ′ |2δαα′δβ̄β′δγγ′δβδδβ̄δ′

+ ajBmBβ′a∗jBmBδ′|bjAmAα′|2δαᾱ′δββ′δδδ′δαγδᾱγ′

+ |bjAmAα′ |2|bjBmBβ′|2δαγδᾱα′δᾱγ′δβδδβ̄β′δβ̄δ′
)
, (2.39)

where the time dependence of a and b functions, and the superscripts Q=A, B have
been suppressed for shortness of notation. It is worth to pay attention to the fact
that the structure of Eq. (2.13) is reproduced here.

2.4.1.2 Spin echo

As already mentioned in Sec. 2.3.2, in the echo case only uncorrelated thermal baths
are considered. The explicit expressions for the single-qubit evolution functions are:

Kσσ′

a (∆t) =
∑
jm

nj a
(1)
j,m,σ̄ a

(2)
j,m,σ a

(1)∗
j,m,σ̄′ a

(2)∗
j,m,σ′ , (2.40)

Kσ
b (∆t) =

∑
jm

nj

(
|a(1)j,m,σ|2 |b(2)j,m,σ̄|2 + |b(1)j,m,σ|2 |a(2)j,m+σ,σ|2

)
, (2.41)

Kσ
c (∆t) =

∑
jm

nj

(
a
(1)
j,m,σ b

(2)
j,m,σ̄ b

(1)∗
j,m,σ̄ a

(2)∗
j,m+σ̄,σ̄ + b

(1)
j,m,σ a

(2)
j,m+σ,σ a

(1)∗
j,m,σ̄ b

(2)∗
j,m,σ

)
,

(2.42)

Kσ
d (∆t) =

∑
jm

nj |b(1)j,m,σ̄|2 |b(2)j,m+σ̄,σ̄|2, (2.43)

where a
(k)
j,m,σ := aj,m,σ(τk) and b

(k)
j,m,σ := bj,m,σ(τk) (with k = 1, 2), ∆t := τ1 + τ2.

Maximum of the echo signal is obtained for τ1=τ2=∆t/2.
The full formulas for ajmσ and bjmσ functions can be found in Appendix (p. 119).

For the qualitative discussion, here it should only be noted that for a qubit splitting
Ω≪ σh one has |ajmσ| ≈ 1 and |bjmσ| ∝ σh/Ω. Therefore, at large fields, all the Ki

functions having at least one b function are diminished. This reflects the fact that at
large Ω the nuclear spin bath induces to pure dephasing of the qubit: only the K+−

a

functions, which accounts for the decay of the initially present coherences, matter.
The UC approximation confirms this fact directly.

2.4.2 Effective three-spin approximation1

In order to test the results obtained within the effective two-spin approximation,
I have performed the same calculations of entanglement (concurrence) dynamics

1 The results of subsection “Effective three-spin approximation” obtained in 2014 have not
been published, but are documented as a report prepared during realization of NCN grant no.
DEC-2012/07/B/ST3/03616.
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using an effective three-spin approximation, which is based on the assumption that
there are two groups of nuclear spins, each having the same hyperfine couplings. Such
a model can be motivated as follows. The electron wave function is approximated
by a piecewise constant function with two steps, which results in the emergence
of two groups of nuclear spins with coupling constants Ai = A|ψ(r ∈ region i)|2.
In such a case, the Hamiltonian of the single QD reads:

ĤQ = ΩŜz + ω

N1∑
k1=1

Ĵz
k1
+ A1

N1∑
k1=1

Ŝ · Ĵk1 + ω

N2∑
k2=1

Ĵz
k2
+ A2

N2∑
k2=1

Ŝ · Ĵk2 .

Here it is assumed, as previously, that electron is confined in a QD and interacts
with the homonuclear spin bath via hyperfine interaction.

The above Hamiltonian has a property that it conserves the z component of the
total spin of the system (Eq. (2.9) holds for it as well). This implies that the
state space of such a Hamiltonian is formed of the disjoint subspaces of a given
value of z component of the total spin. I use as a basis of the state space the set
of states of the form |ξ⟩ ⊗ |j1m1⟩ ⊗ |j2m2⟩ = |ξj1m1j2m2⟩, where ξ is z component
of electron spin, j1, j2 are the magnitudes of the total spins of the first and the second
group of nuclear spins, respectively, and m1, m2 are the z components of the total
spins of the first and the second group of nuclear spins, respectively. The evolution
of a state |ξj1m1j2m2⟩ will take place only in the subspace where z component of the
total spin is constant and equals ξ +m1 +m2. All states of each subspace can be
divided into two groups: |ξj1m1j2m2⟩, where m1 + m2 = m0, and |ξ̄j1m′

1j1m
′
2⟩,

where m′
1 +m′

2 = m0 + 2ξ.
This knowledge about the structure of the state space of the problem allows to

simplify the calculations. There is no need to perform calculations with a Hamilto-
nian acting in the whole state space (of dimension 21+N1+N2 for nuclear spins 1

2
) at

the same time. Instead of it, one can consider
(
N1

2
+ 1
) (

N2

2
+ 1
)

different (j1, j2)-
pairs, for each of them calculate the evolution of each single state in the restricted
subspace to which it belongs and sum up all the results at the end. It is worth not-
ing that the dimension of the largest subspace of the constant z component of the
total spin ξ + m1 + m2 will be for the

(
j1 =

N1

2
, j2 =

N2

2

)
-pair and it is equal to

4j − 2m0 + 1 in the case of j1 = j2 = j. Using such an approach, one can perform
the calculations for a larger number of nuclear spins in the bath (in comparison to
the case of direct calculations, which can be done for less than 20 nuclear spins).
Now the main difficulty one faces is to perform all the summations rather than to
diagonalize the relevant part of the Hamiltonian.

The goal is then to calculate Kσξξ′σ′(t) functions. Let us first define the initial
density operator of the nuclear spin bath in a narrowed state:

ρ̂bath(0) =
1

Z

∑
j1,j1,α1,α2,

A1m1+A2m2=hz0

|j1m1α1j1m2α2⟩⟨j1m1α1j2m2α2|

=
1

Z

∑
j1,j1,

A1m1+A2m2=hz0

ρj1m1j2m2 |j1m1j1m2⟩⟨j1m1j2m2|,

where ρj1m1j2m2 = ρj1j2 = nj1nj2 and nji =
Ni!

(Ni
2
−ji)!(Ni

2
+ji)!

2ji+1
Ni
2
+ji+1

is the degeneracy

of a state |jimi⟩ with respect to quantum numbers ji, mi, (quantum number αi
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labels the ways how the individual spins were added in order to obtain a state with
the total spin ji), hz0 is the magnitude of the z component of the Overhauser field,
Z is a statistical sum,

Z =
∑
j1j2,

A1m1+A2m2=hz0

ρj1j2 .

Having the explicit form of density operator of nuclear spin bath, one can calculate
Kσξξ′ functions:

Kσξξ′σ′(t) = Trbath

{
⟨σ|e−iĤit|ξ⟩ρ̂bath(0)⟨ξ′|eiĤit|σ′⟩

}
= Trbath

⟨σ|e−iĤit|ξ⟩⟨ξ′|
∑
j1,j2,

A1m1+A2m2=hz0

ρj1m1j2m2 |j1m1j2m2⟩⟨j1m1j2m2|eiĤit|σ′⟩


=

∑
j′1,m

′
1,j

′
2,m

′
2,

j1,j2,A1m1+A2m2=hz0

ρj1m1j2m2⟨σj′1m′
1j

′
2m

′
2|e−iĤit|ξj1m1j2m2⟩

× ⟨ξ′j1m1j2m2|eiĤit|σ′j′1m
′
1j

′
2m

′
2⟩

=
∑

j′1,m
′
1,j

′
2,m

′
2,

j1,j2,A1m1+A2m2=hz0

ρj1m1j2m2⟨σj′1m′
1j

′
2m

′
2|e−iĤit|ξj1m1j2m2⟩

×
(
⟨σ′j′1m

′
1j

′
2m

′
2|e−iĤit|ξ′j1m1j2m2⟩

)†
.

The matrix elements have the property that

⟨σj′1m′
1j

′
2m

′
2|e−iĤit|ξj1m1j2m2⟩ = δσ+m′

1+m′
2,ξ+m1+m2

δj′1,j1δj′2,j2

× ⟨σj′1m′
1j

′
2m

′
2|e−iĤit|ξj1m1j2m2⟩.

This property allows to perform summations over j′1, j′2 analytically and to obtain
the simplified expression for Kσξξ′σ′(t)

Kσξξ′σ′(t) =
∑

m′
1,m

′
2,

j1,j2,A1m1+A2m2=hz0

ρj1j2 δσ+m′
1+m′

2,ξ+m1+m2
δσ′+m′

1+m′
2,ξ

′+m1+m2

× ⟨σj1m′
1j2m

′
2|e−iĤit|ξj1m1j2m2⟩

(
⟨σ′j1m

′
1j2m

′
2|e−iĤit|ξ′j1m1j2m2⟩

)†
.

There is no way to calculate these matrix elements analytically (because of the
high dimension of a subspace in the general case). I have calculated them numeri-
cally using only the relevant part of the Hamiltonian in the calculations (i.e. the part
which acts in a subspace z component of total spin for which is equal to ξ+m1+m2).
Complexity of computation of Kσξξ′σ′(t) functions depends on the choice of state
of nuclear bath: for narrowed nuclear bath state one should perform calculations
using the above formula with all possible m1 and m2 which satisfy the condition
A1m1 + A2m2 = hz0 (in the general case it will lead to a necessity to perform the
calculations in a few subspaces with different m0); for thermal nuclear bath state one
should perform the calculations for all possible values of hz0, i.e. perform an additional
summation over hz0. Here it is worth noting that in the case A1 = A2 the entire evo-
lution will take place in a single subspace only (A1m1 + A2m2 = A1(m1 +m2) = hz0,
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m1 +m2 = hz0/A1 = m0) and one gets back the uniform coupling model (two-spin
approximation).

To preserve the connection with previously introduced notation, it should be
noted that Kσσ′

a (t) function corresponds to Kσξξ′σ′(t) function with {σ, ξ, ξ′, σ′} =
{+,+,+,+}, {−,−,−,−}, {+,+,−,−}, {−,−,+,+}, andKσ

b function corresponds
to Kσξξ′σ′(t) function with {σ, ξ, ξ′, σ′} = {+,−,−,+}, {−,+,+,−}, for other com-
binations of indices Kσξξ′σ′(t) ≡ 0.

As a unit of time it is instructive to use two-dot T ∗
2 which is defined as

1

(T ∗
2 )

2
:=

1(
T ∗
2,A

)2 +
1(

T ∗
2,B

)2 , (2.44)

where T ∗
2,A, T ∗

2,B are the dephasing times for qubit A and B, respectively. Assuming
that bath consists of nuclear spins of a single species and J = 1

2
, one has the exact

relation between the dephasing time of a single QD, its size, and hyperfine coupling
T ∗
2,i =

√
2
σ

=
√
8√∑Ni

j=1 A
2
j

, where Ni is the number of nuclear spins in the ith QD, and

Aj is the hyperfine coupling between the electron spin and the jth nuclear spin of
that QD.

By using the relation
∑Ni

j=1A
2
j = A2

Ni
[108] and fixing T ∗

2,qA
= T ∗

2,qB
= 1, one

can introduce a parameter R := A2

A1
, which indicates how different the hyperfine

couplings in the two different groups are. This parameter now sets the hyperfine
couplings A1 =

√
8

N1+N2R2 and A2 = RA1. It should be noted that the case of R = 1

is equivalent to a uniform coupling model with N = N1 + N2, whereas the cases
of R = 0 or R → ∞ also correspond to a uniform coupling model, but with N = N1

or N = N2, respectively.
The numerical calculations of the reduced two-qubit density operator based on

the effective two-spin approximation (N = 200) and these based on effective three-
spin approximations (N1 = N2 = 100 with R = 2, 5, 10) show that in the case
of high-temperature bath state the results are identical, whereas in the case of nar-
rowed bath states on time scale up to several tens of T ∗

2 the differences are small
(about 1%) and start to be noticeable at long times t > 10T ∗

2 . This convergence
of the results, obtained in two different approximation approaches, confirms the va-
lidity of the two-spin approximation (uniform coupling model), especially at short
times, and points out that UC model catches the essence of the decay of coherences
and entanglement of two spin qubits.

The idea of approximation of the central spin Hamiltonian of a system, which
has a large number of nuclear spins with all different hyperfine couplings (like an
electron spin in QD), as interaction of the central spin with a small number of large
composite spins have been systematically investigated in Ref. [170], where the way
of construction of such consecutive approximations is presented.
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2.5 The Results

2.5.1 Quantification of entanglement of two electron spins

To analyze the dynamics of entanglement it is necessary to discuss first the methods
of its quantification. As initial states of two qubits I consider Bell states

|Φ±⟩=
1√
2
(|++⟩ ± |−−⟩),

|Ψ±⟩=
1√
2
(|+−⟩ ± |−+⟩),

and a Werner state:
ρ̂W =

1− p

4
1+ p |Ψ−⟩ ⟨Ψ−| , (2.45)

where p∈ [0, 1] can be interpreted as the probability that ρ̂W is in fact the entangled
|Ψ−⟩ state.

The initially pure state of two qubits becomes mixed in course of time evolution
due to interaction with the environment. The amount of entanglement in a mixed
state of two qubits may be quantified using various measures [5, 7], from which
the concurrence has been chosen, since it is one of the most popular measures for
two-qubit states and, in addition, it is easy to calculate numerically.

For the initial Bell state at very high magnetic fields, at which qubits undergo
pure dephasing, the concurrence C(t)≈2|ρab(t)|, where ρab(t) is the initially nonzero
coherence. In the case of uncoupled qubits, the amount of entanglement is given
by multiplication of known high-field results for single-qubit decoherence. Below,
mostly low and moderate magnetic fields, at which C(t) shows new features not
inherited from the single-qubit coherence decay, are considered.

Measuring the amount of entanglement in an experiment is a challenging task,
since it requires performing a full tomographic reconstruction of ρ̂(t) (see e.g. Ref. [66]
for an experimental example with DQDs, and Ref. [171] for a theoretical proposal
of a tomography scheme for DQDs taking into account the limitations specific to ex-
periments on gated QDs). To reconstruct a two-qubit state, one should gather data
from at least 15 different measurement settings, so obviously any simpler method
of entanglement quantification will be helpful, even if it will be able to detect en-
tanglement of only a certain class of states. With such an intention, entanglement
witnesses [154] have been constructed. They are defined as observables which have
a negative expectation value only when the state is entangled. It is worth to stress
that not every entangled state will be detected by a given witness. Usually one con-
structs an entanglement witness bearing in mind a certain form of a mixed entangled
state which one aims to detect [153]. In the system of electrically gated DQD the
projection on a singlet state, P̂S, is a natural two-qubit measurement operator [47],
so one immediately gets an entanglement witness ŵS≡1/2− P̂S. The measurements
of ⟨P̂S(t)⟩, which show the decay of an entangled two-spin singlet state in DQD,
are routinely performed since the first coherent control of singlet-triplet qubit was
demonstrated [58]. If one aims to detect the entanglement of any other Bell state,
then it will require first to perform, in principle possible, conversion of that state
into singlet state.

Another approach to entanglement quantification is measuring of the efficiency
of execution of some task for which entanglement is crucial. For two qubits, quantum
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teleportation is a task of such kind [155, 156, 157, 158]. With an entangled state ρ̂AB

of spins A and B (located in possibly distant QDs) established, and with the third
dot C located nearby the dot A (in order to allow for two-qubit operations on A and
C), a quantum state of spin C can be transferred to spin B with the use of two-qubit
gate on A and C, and with single-qubit operations and projective measurements. At
the beginning, a Bell state of spins A and B is initialized, and then at a later time
t a pure state |ϕC⟩ is created in dot C. Next, the teleportation protocol is carried
out on time scale negligible compared to the time scales of qubits’ dynamics. Ideal
realization of the teleportation procedure teleports the state of qubit C at instant
t, fidelity of which compared to its initial state is

Fϕ(t) = ⟨ϕC |TrCA

(
ρ̂CAB(t)

)
|ϕC⟩ , (2.46)

is determined by the density operator ρ̂AB(t) at the moment of teleportation. It has
been proven [12, 172] that the fidelity averaged over all |ϕC⟩ states, F̄ (t), cannot
exceed 2/3 for separable ρ̂AB(t), and hence, the observation of F̄ > 2/3 proves the
existence of entanglement of spins A and B. Fortunately for practical purposes,
in order to obtain the average fidelity one can limit the number of measurements
to these involving only six mutually unbiased basis states [158, 173], e.g. |±X⟩ ≡
(|+⟩ ± |−⟩)

√
2, |±Y ⟩ ≡ (|+⟩ ± i |−⟩)

√
2, |±Z⟩ ≡ {|+⟩ , |−⟩}, instead of the whole

set of qubit states.

2.5.2 Entanglement dynamics due to coupling to thermal and
partially narrowed baths

According to the discussion in Sec. 1.3.3 one can use QSBA to predict the free
evolution of qubits, when states of nuclear spin baths are not artificially modified
beforehand, i.e. electron spins interact with nuclear baths, which are in the thermal
equilibrium (or partially narrowed) state. It is expected that the results obtained
using this approach are correct on a time scale of the order of T ∗

2 . Therefore, it
is reasonable to use the UC approach from Sec. 2.4.1. This model has been used
for different physical systems and the UC solution for the free evolution of a spin
interacting with a thermal nuclear bath is well known [134, 174]. The details of UC
model are included in Appendix (p. 119), where closed expressions for Kσσ′

a and Kσ
b

are given.
In high magnetic fields, Ω≫σh, decoherence is nearly of pure dephasing type: as

shown in Appendix (p. 119), for large bath (i.e. for large N) and at times t≪Ω/σ2
h

one has

KQ,σσ̄
a (t) ≈ e−iσΩQt exp

−( t

T ∗
2,Q

)2
 , (2.47)

where Q labels the A and B qubits. This result can be obtained by disregarding the
V̂ff operator and calculating an average over static hz fields with normal distribution
(see Eq. (1.22)) [127]. On the other hand, the Kσ

b functions are strongly suppressed
due to large Ω, and therefore, Kσσ

a =1−K σ̄
b ≈1.

The exact form of the transient dynamics of Kσ
b is of less importance for Ω≫σh,

but the attention should be paid that at t>T ∗
2,Q one has

KQ,σ
b (t > T ∗

2,Q) ≈
σ2
Q

Ω2
=

2

(ΩT ∗
2,Q)

2
≡ 2

Ω̃2
Q

, (2.48)
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where Ω̃Q :=ΩT ∗
2,Q is the dimensionless Zeeman splitting of electron spin in dot Q,

expressed in units of ℏ
T ∗
2

(with a simplifying assumption ℏ = 1), see Appendix (p.
119) for derivation of this formula.

From the formula for the concurrence of X state, Eq. (1.5), one can clearly
see that at high fields for Bell states C(t) ≈ 2|ρab(t)| (where ρab(t) is the nonzero
coherence present in a given Bell state) up to entanglement sudden death time tD
at which |ρab|=

√
ρccρdd (where all the indices a, b, c, d are distinct):

C(t < tD) ≈ exp

(
−
(
t

T ∗
2

)2
)
, (2.49)

where the two-dot T ∗
2 time is defined in Eq. (2.44). To estimate quantitatively tD,

one has to look at the diagonal elements of ρ̂(t) which initially were equal to zero.
In high fields, Ω̃Q > 1, for long times, t > T ∗

2 , using Eqs. (2.21) and (2.48) and
assuming that the initial state was |Φ±⟩ (analogous reasoning applies to any Bell
state), one has

ρ22(t) = KA,++
a KB,−

b ρ11(0) +KA,+
b KB,−−

a ρ44(0)

=
1

2

((
1−KA,−

b

)
KB,−

b +KA,+
b

(
1−KB,+

b

))
,

≈ 1

Ω̃2
A

+
1

Ω̃2
B

. (2.50)

The occupation ρ33(t) is described by the same equation. While solving the following
equation for tD |ρ14(tD)| =

√
ρ22(tD)ρ33(tD), where for ρ14(t) = KA,+−

a KB,+−
a the

high-field approximation was used, Eq. (2.47), and assuming ΩA = ΩB = Ω one
obtains

tD = T ∗
2

√√
2 lnΩT ∗

2 . (2.51)

After the introduction of dimensionless qubit splitting Ω̃ :=ΩT ∗
2 , and dimensionless

time t̃ := t/T ∗
2 , the expressions for both the concurrence and the ESD time take

concise forms

C(t < tD) ≈ e−t̃2 , (2.52)

t̃D =

√√
2 ln Ω̃ . (2.53)

The above reasoning suggests that this universality is expected at Ω̃≫ 1, but the
numerical predictions obtained using the UC model show that it holds at all magnetic
fields, with N ≫ 1 being the only requirement. In Fig. 2.1 the results for C(t̃) at
Ω̃ = 0, 5, and ∞ (actually, a value so large that any further increase of it does
not change the result in a visible manner) are shown. It should be noted that in
this graph the results calculated for symmetric (NA = NB) QD and for strongly
asymmetric (NA = 2NB) QD are presented. From these plots one can draw two
conclusions: only the high magnetic field result is in quantitative agreement with
Eq. (2.52) (as expected), and, more importantly, C(t̃) depends only on Ω̃. As
shown in Fig. 2.1, in low and moderate magnetic fields, Ω̃ ≈ 1, the concurrence
has an oscillatory component, that originates from oscillations of Kσ

b functions with
frequency ∝ Ω̃, which have higher amplitudes at low fields, so they lead to oscillations
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of the diagonal elements of the two-qubit density operator. It is also worth noting
that at lower fields the sudden death of entanglement is clearly visible (at time tD
concurrence becomes equal to 0 exactly, C(tD) = 0). The dependence of t̃D on
Ω̃ is shown in the inset of Fig. 2.1. The same results for concurrence C(t) and
entanglement sudden death time tD(Ω) for two electron spin qubits interacting with
baths in the thermal states were obtained in Ref. [162], where the authors propose
to sense low magnetic fields by measuring of tD. In Refs. [175] and [176] the possible
significance of entanglement dynamics for the operation of chemical magnetometers
is discussed. Here it has been shown that t̃D := tD/T

∗
2 is a function of Ω̃ := ΩT ∗

2

only. This knowledge makes possible practical use of any pair of QDs (even two
dots of very different sizes) for such a magnetometry scheme. The universality
of the entanglement decay expressed in units of T ∗

2 can be first used for a calibration
of a device, since high-field decay can be fitted using the simple formula Eq. (2.52).
After obtaining in that way the value of T ∗

2 , the universal dependence t̃D (shown in
the inset of Fig. 2.1) or the approximation to it (Eq. (2.51)) may next be used.

In some experiments on DQDs [65], in order to separately address each of the
qubits (i.e. perform the single-qubit unitary operations using a.c. magnetic field),
the qubits were exposed to a magnetic field of different strength in each QD, i.e. ΩA

was slightly different from ΩB. Below, the resulting correction to the entanglement
sudden death time is presented using a parameter η which accounts for the relative
difference of magnetic field ΩA = Ω and ΩB = (1 + η)Ω, with η ≪ 1. The first-
order correction to formula (2.53) is obtained by repeating the same derivation as
previously: t̃D ≈ t̃0 + δt̃ with

δt̃ = −η
(T ∗

2,B)
2

(T ∗
2,A)

2 + (T ∗
2,B)

2

1

t̃0
, (2.54)

where t̃0 corresponds to t̃D for ΩA=ΩB, i.e. to the value from Eq. (2.51).
Qubits initially being in the Werner state from Eq. (2.45) shows a qualitatively

different behavior of t̃D. Using Eq. (2.21) one can obtain (retaining only terms
of leading order in 1/Ω̃2) the t̃ > 1 values of ρ11 = ρ44 ≈ (1 − p)/4 + p2/Ω̃2, which
together with |ρ23|≈ p

2
e−t̃2 result in

t̃D,W =

√√√√ln

[(
1− p

2p
+

2

Ω̃2

)−1
]
, (2.55)

which at high fields, Ω̃ ≫ 2
√
p/(1− p), gives an Ω̃-independent result, t̃D,W ≈√

ln(2p/(1− p)), shown in the inset of Fig. 2.1.
Summarizing the results of this subsection, it is worth to note the basic features

of the mixed ρ̂(t) state. The leading effect of the nuclear spin baths is the dephasing
of qubits’ coherences, and the secondary effect at a finite magnetic field is a partial
redistribution of populations. The initial Bell state of qubits evolves into a state
ρ̂(t) with initially zero populations increased to some level (∝ 1

Ω̃
) and with reduced

coherences, i.e. it becomes a Werner-like state. This type of evolution of two-qubit
density operator induced by hyperfine interaction holds also in the cases of narrowed
and correlated nuclear baths discussed in the following sections.
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Figure 2.1: Concurrence decay for two
electron spins interacting with uncorre-
lated thermal baths. The electron spins
are initially in one of the Bell states,
and the dynamics of their reduced den-
sity operator is calculated using the UC
approach. Time is in units of two-dot
T ∗
2 defined in Eq. (2.44), and the dimen-

sionless Zeeman splitting is Ω̃ := ΩT ∗
2 .

The result for Ω̃ = ∞ (which in fact is
a value large enough for the changes in
C(t̃) upon increasing it to be invisible
in the Figure) is the same as the result
of calculation using the pure dephasing
approximation from Eq. (2.47). Lines
and symbols correspond to two distinct
sets of NA and NB. The agreement
of the results corresponding to the same
values of Ω̃ illustrates the universal char-
acter of the C(t̃) behavior. Black lines
show results for the initial Werner state
with p= 3/4. In the inset we show the
dependence of the ESD time t̃D := tD/T ∗

2

on Ω̃: blue solid line is the exact result
for Bell states, dashed line is the appro-
ximate large-field result from Eq. (2.53),
and black solid line is the exact result for
Werner state with p=3/4. The figure is
reproduced from Ref. [1].
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Figure 2.2: Concurrence decay for two
electron spins initialized in one of the
Bell states interacting with two sepa-
rate uncorrelated nuclear baths in nar-
rowed states (each bath has hzQ = 0).
The calculations are performed using the
UC approach (so that hzQ = 0 corre-
sponds to mQ = 0). Time is in units
of two-dot T ∗

2 defined in Eq. (2.44), and
the dimensionless Zeeman splitting is
Ω̃ := ΩT ∗

2 . Solid lines correspond to
the case of two identical QDs (NA =
NB =1000), dashed lines correspond to
the case of two strongly asymmetric QDs
(NA= 2NB=1000), symbols correspond
to the case of two identical QDs consis-
ting of realistic number of nuclear spins
(NA = NB = 106), and the dotted line
is the calculation in the pure dephas-
ing approximation using Eq. (2.56) for
Ω̃ = 10. Note that symbols are in full
agreement with solid lines, i.e. the re-
sults for two identical QDs are indepen-
dent of the sizes of these QDs in the
domain of applicability of the UC ap-
proach. Dashed lines are very close to
the solid ones (the difference between
the two is most visible for Ω̃=5) showing
that results obtained for QDs of diffe-
rent sizes, are very similar one to an-
other when expressed in the dimension-
less units used here. The figure is repro-
duced from Ref. [1].
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2.5.3 Entanglement dynamics due to coupling to nuclear spin
baths in a strongly narrowed state

In this subsection, nuclear spin baths in a strongly narrowed state described either
by Eqs. (2.3) and (2.4) for uncorrelated baths, or by Eq. (2.5) for correlated baths in
DQD are considered. They are discussed in subsections 2.5.3.1 and 2.5.3.2, respec-
tively. Here it is assumed that the fluctuations of hzQ are constrained to such a degree
that the dephasing due to averaging over a quasistatic spread of hzA,B becomes ir-
relevant, and other processes (related to averaging over the transverse components
of Overhauser fields) have to be taken into account. Thus, σn (the width of relevant
distribution of hzQ or ∆hz := hzA − hzB) is so small that the timescale of coherence
decay due to it, ≈ 1/σn, is much longer than the time scale of entanglement decay,
that is discussed below.

2.5.3.1 Each bath narrowed separately

The free evolution for the narrowed bath state can be calculated in the same way
as for high-temperature bath state (presented in the previous section) with the only
difference that now theKa/b(t) evolution functions are obtained assuming a narrowed
state in each of the QDs (see Appendix (p. 119)). It is convenient to analyze the
main features of the entanglement decay using approximate expressions, valid for
ΩQ≫σQ, where ΩQ=Ω+ hzQ is the total spin splitting in the dot Q (note that spin
splitting due to the external magnetic field B is again assumed to be the same in
both QDs). For ΩQ≫σh on time scales discussed in Appendix (p. 119), for hzQ=0
one can obtain a smooth coherence decay

KQ,+−
a,p=0 (t) ≈

e−iΩQt

1 + it/τQ
= e−iΩQt e−i arctan t/τQ√

1 + (t/τQ)2
, (2.56)

where
τQ =

4NQΩQ

A2
=

1

2
ΩQ(T

∗
2,Q)

2. (2.57)

The characteristic decay time τQ becomes a function of ΩQ, since the influence
of transverse Overhauser fields diminishes with increasing qubit splitting ΩQ. It
is important to note here that the same results have also been obtained using the
ring diagram theory (RDT) [164, 111], and they can also be derived by performing
a classical average over the transverse components of the Overhauser field [108, 177].
The derivation of this approximate formula from the exact UC solution is presented
in Ref. [125].

On a time scale t≪NQ/A for finite bath polarization one has [126]

KQ,+−
a,p (t) ≈ e−iΩQt pQ

pQ cos
(

2Jpt
τQ

)
+ ip2Q,⊥ sin

(
2Jpt
τQ

) , (2.58)

where J is the nuclear spin (with all the nuclei assumed to have the same J),
pQ ∈ [0, 1] is the nuclear polarization, and p2Q,⊥ = J + 1 − ⟨(Jz)2⟩/J . Note that for
unpolarized bath pQ=0 the transverse component p2⊥=J(J +1)/3, and the pQ → 0
limit of Eq. (2.58) gives Eq. (2.56).

The above functions derived within the UC model are modulated by oscillations
(with frequency ≈ Ω̃Q) of amplitude ≈ 8/Ω̃2

Q, which vanish only for t ≫ τQ (see
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Appendix (p. 119)). In low magnetic fields, Ω̃Q, the evolution of diagonal elements
of the reduced density operator is determined by Kσ

b,Q functions. These functions
also oscillate with amplitude ≈ 4/Ω̃2

Q, but at times at times t≫ τQ their oscilla-
tions dephase and the functions stabilize, Kσ

b,Q ≈ 2/Ω̃2
Q. In Fig. 2.2, the results for

the concurrence decay of initially Bell states at zero bath polarization are shown.
The oscillations ofK functions cause the oscillations of concurrence: at low magnetic
fields their relatively large amplitude leads to pronounced effects of entanglement
death and revival – see the result for Ω̃ = 1.8 for most prominent demonstration.
At higher fields they cause only a saw-tooth pattern of Ω̃ dependence of the final
ESD time (shown in Fig. 2.3). Like in the previous section, one can also derive
approximate analytical formulas for ESD time at large magnetic fields. Since the
expressions in the narrowed bath state case are more involved, for sake of clarity,
it is better to note only the asymptotic behaviour of sudden death time tD: when
initial two-qubit state is one of Bell state, tD ∝B2, whereas for a Werner state it
grows slowly, tD ∝ B

√
p/(1− p). The calculated numerically results, which agree

with the estimates, are shown in Fig. 2.3. Lastly, the use of the “universal” units of Ω̃
and t̃ introduced in the previous section should be justified. It does not follow from
the formulas for Kσσ̄

a given above that in the fully narrowed case one can expect
the results for all pairs of dots (e.g. having NA ̸=NB) to collapse on the same curve
when using these units. Nevertheless, it is instructive to use them in order to make
an easy comparison with the results shown previously (and in order to underline the
coherence-enhancing effect brought by nuclear bath narrowing). Additionally, when
Ω̃A = Ω̃B one can show that for short times (when C(t̃)≈ 1), decay of concurrence
is quadratic in time C(t̃) ≈ 1− 2t̃2/Ω̃2. For long times no universal result for QDs
with T ∗

2,A ̸=T ∗
2,B exist, but numerical results shown in Fig 2.2, which are obtained for

QDs of different sizes (solid and dashed lines correspond to NA=NB and NA=2NB,
respectively), are almost indistinguishable.

2.5.3.2 Narrowing of the Overhauser field gradient – the case of corre-
lated baths

In the case of correlated state of nuclear spin baths described by Eq. (2.5), the
first thing to notice is the major difference in decoherence of |Φ±⟩ and |Ψ±⟩ states.
The coherence of |Φ±⟩ states averaged over quasistatic values of hzA and hzB (denoted
by ⟨..⟩z) gives

ρ++,−−(t) ∝ ⟨exp
(
− i(hzA + hzB)t

)
⟩z ∝ exp

(
− (t/T ∗

2 )
2
)
, (2.59)

where T ∗
2 is given by Eq. (2.44). Despite the fact that the difference of hzA and

hzB has diminished fluctuations, the distribution of each of hzA,B is still the same
as for the high-temperature state (with the only exception of the case of maximal
∆hz corresponding to two baths fully polarized in opposite directions). On the con-
trary, the |Ψ±⟩ states are unaffected by inhomogeneous broadening, because under
averaging over hzA,B the coherence is affected only by fluctuations of the transverse
components of the Overhauser fields ρ+−,−+(t) ∝ ⟨exp(−i∆hzt)⟩z = exp(−i∆hzt).
It can be stated in other words that the |Ψ±⟩ states form a decoherence-free sub-
space [178, 179, 180] with respect to correlated pure-dephasing noise. This effect
is demonstrated in Fig. 2.4, where concurrence was obtained in the UC approach
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The figure is reproduced from Ref. [1].
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Figure 2.4: Decay of concurrence of |Φ±⟩
and |Ψ±⟩ Bell states interacting with
correlated nuclear baths in a state
of strongly narrowed distribution of
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here). Calculations are performed using
the UC approach. The |Φ±⟩ states (solid
lines) decay just like in the thermal bath
case (compare with Fig. 2.1), while the
decay of |Ψ±⟩ states (dashed lines) is
very similar to the decay observed in the
case of separate narrowing of each of the
nuclear baths (compare with Fig. 2.2),
only the fast oscillations of C(t) are ab-
sent for t≳T ∗

2 . Time is in units of two-
spin T ∗

2 defined in Eq. (2.44), and the
dimensionless Zeeman splitting is Ω̃ :=
ΩT ∗

2 . The figure is reproduced from
Ref. [1].

using Eqs. (2.11) and (2.39) for all the Bell states are shown for ∆hz =0. The en-
tanglement of |Φ±⟩ states decays basically in the same way as in Fig. 2.1, whereas
the shape of C(t̃) dependence for |Ψ±⟩ states resembles that from Fig. 2.2.

The relationship between the entanglement evolution in the case of the corre-
lated bath and that of uncorrelated baths can be easily seen at high magnetic fields,
Ω≫ σh. The concurrence of Bell states is approximately proportional to the rele-
vant coherence, which can be related to functions KQ,σσ̄

a,pQ
(where pQ ∈ [−1, 1] is the

polarization of the dot Q) describing single-spin coherence decay. For example, for
|Ψ±⟩ states, using Eq. (2.7), and defining ∆p :=pA − pB=∆hz/AJ , one can obtain

ρ+−,−+(t)

ρ+−,−+(0)
=
∑
pA

w(pA; ∆p)K
A,+−
a,pA

(t)KB,−+
a,pB=pA−∆p(t), (2.60)

where the KQ,σσ̄
a,pQ

are the single-dot dephasing functions, i.e. the relevant two-spin
coherence is an appropriately weighted average over results of calculations assuming
uncorrelated baths. The UC approximation allows to get easily the expression for
the distribution of weights. Using the notation from Eqs. (2.5) and (2.7) one has
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MQ(pQ)=
∑

jQ≥|JNQpQ| njQ and

w(pA; ∆p) =
MA(pA)MB(pB=pA−∆p)∑
pA
MA(pA)MB(pB=pA−∆p)

. (2.61)

The behavior of the expression Eq. (2.60) originates from the fact that according
to an approximate formula Eq. (5.11) the degeneracy factors njQ ∼jQ exp(−2j2Q/N)

decrease rapidly with jQ for jQ ≫
√
NQ/2. So, the weights from Eq. (2.61) are

maximized when pA = ∆pNB/(NA + NB) =: p̄A (to which pB = −∆pNA/(NA +
NB) =: p̄B corresponds). This is shown in Figs. 2.5, 2.6, where w(mA; ∆m) with
mA=pANAJ is plotted. In other words, the sum of Eq. (2.60) is dominated by the
narrowed bath states corresponding to these p̄Q. After performing the summation,
the fast oscillations of the NFID coherence signal are averaged out at times t >T ∗

2 .
Therefore, the coherence (and hence, entanglement) decay can be approximated as

ρ+−,−+(t)

ρ+−,−+(0)
≈ KA,+−

a,p̄A (t)KB,−+
a,p̄B (t), (2.62)

where KQ,σσ̄
a,p̄Q are the oscillation-free functions from Eq. (2.58). This derivation re-

lied on assuming that the relevant mQ ≫
√
NQ/2, but when ∆p = 0 Eq. (2.60)

is dominated by mQ ≲
√
NQ, and the decay can be approximated by a product

of two zero-polarization single-dot Kσσ̄
a functions from Eq. (2.56). The shape of the

distribution of weights w(mA; ∆m) (namely, the fact that the highest weights are
distributed in close vicinity of corresponding maximal value) and the obtained ap-
proximations explain the similarity of the entanglement decay between Fig. 2.2 and
Fig. 2.4, illustrated in Fig. 2.7, where the entanglement decay for correlated baths
calculated using UC model (with ∆hz=0) is plotted with the corresponding results
for uncorrelated baths (each narrowed to hzQ = 0), which are also calculated using
UC model.

2.5.4 Entanglement echo

Because of the quasistatic origin of electron spin dephasing caused by a thermal
nuclear spin bath, execution of the spin echo procedure restores efficiently single-
qubit coherence [58, 181, 140]. Here it is important to make a note about features
of echo signal: for electron spins in gated QDs, at low magnetic fields (when the time
scale t < N/A is of interest) the dynamics of the echo signal is caused by nuclear
Larmor precession, and the presence of distinct nuclear species with ωα ̸= ωβ [164,
111, 165, 140, 166] manifests at long times, specifically for times larger than 1/ωαβ

(where ωαβ :=ωα − ωβ).
Thus, the spin echo procedure applied to two electron spin qubits is expected

to be efficient, especially in high magnetic fields, Ω≫ σh, when nuclear spin baths
cause pure dephasing of qubits. When dealing with a single spin, the echo refocuses
the coherence of superposition of Ŝz by application of πx or πy pulse (−iσ̂x or −iσ̂y
operator, respectively), which amounts to exchange of amplitudes between |+⟩ and
|−⟩ states. Any two-qubit state can also be subjected to simultaneous application
of πx/y pulses [66, 67, 182] in order to recover its coherence. This procedure acts in
the same way as the single qubit echo: for every Bell state, the π pulses interchange
the amplitudes of the two relevant basis states. So, here the procedure of two-qubit
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Figure 2.5: Typical distributions
of normalized weights for indivi-
dual (mA,mB)-pairs for two nu-
clear spin baths in correlated state
∆hz :=hzA−hzB ⇔∆p := pA−pB = ∆hz

AJ
⇒

mB = (mA/NAJ − ∆p)NBJ in the case
of two identical QDs (open symbols)
and in the case of two strongly asym-
metric QDs (filled symbols). According
to the formula discussed in Sec. 2.5.3.2,
the maximum of the distribution occurs
at m̄A = ∆pNANBJ/(NA + NB), which
for ∆p = 0.4 gives 100 (662

3
≈ 67) for

symmetric (asymmetric) QDs and pa-
rameters used here. The normalization
is
∑

mA
w(mA; ∆m) = 1. The figure is

reproduced from Ref. [1].
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Figure 2.6: Distributions of weights
for (mA,mB)-pairs for two nuclear spin
baths of spins 1

2
(upper panel) and 3

2

(lower panel) in correlated state ∆hz :=
hzA−hzB ⇔∆p := pA−pB = ∆hz

AJ
⇒mB =

(mA/NAJ −∆p)NBJ in the case of two
identical QDs (NA = NB = 100). Blue
dots represent weights w(mA,mB) calcu-
lated exactly for ∆m = 40 which gives
bath polarization ∆p = ∆m

NJ
= 0.8 for

spins 1
2

and ≈ 0.27 for spins 3
2
. Green

asterisks represent weights w(mA,mB)
calculated exactly (and shifted by 20
to the right) for ∆m = 0 which
gives bath polarization 0 for spins 1

2

and 3
2
. The solid red line represents

the approximated formula for weights

w(mA; ∆m) = e−
(m−∆m

2 )
2

2σ2 , where σ =√
1
6
NJ(J + 1).

echo, which is realized by application of synchronized single-qubit π rotations, is
considered. In low magnetic fields, ΩQ ≲ σh, on the time scale of t≪ 1/ωαβ (when
one can disregard the existence of distinct ωα splittings of various nuclear species
on that time scale) one can rely on the single-species UC approach to spin echo
signal from Secs. 2.3.2 and 2.4.1.2 . In Fig. 2.9 the time-dependence of concurrence
in a “real-time” version of the echo protocol is shown. For t < τ1 = 4T ∗

2 the free
evolution decay of entanglement is plotted, and for later times lines in this figure
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Figure 2.7: Concurrence decay for two
electron spins interacting with two un-
correlated and correlated nuclear baths
in narrowed states. The spins are ini-
tially in |Ψ+⟩ or |Ψ−⟩ Bell state and
the dynamics of their reduced density
operator is calculated using the UC ap-
proach. Dashed lines correspond to the
case of separately narrowed baths (cal-
culated for bath sizes NA = NB = 105),
while solid lines correspond to the case
of correlated state of the baths (calcu-
lated for bath sizes NA = NB = 1000)
with ∆hz=0. Time is in units of two-dot
T ∗
2 defined in Eq. (2.44), and the dimen-

sionless Zeeman splitting is Ω̃ := ΩT ∗
2 .

The figure is reproduced from Ref. [1].
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Figure 2.8: Normalized absolute va-
lues of single-qubit and two-qubit co-
herences (for initial |Ψ±⟩ state) calcu-
lated for two dots with NA = NB =
1000 in fields Ω̃ = 3 (in blue) and
Ω̃ = 20 (in red). Dashed and dot-
dashed lines correspond to coherences
of qubits A and B, respectively, calcu-
lated using Eq. (2.58) assuming pA=0.2
and pB = −0.2. Since hzQ is enhanc-
ing (suppressing) the total qubit split-
ting for dot A (B), the decays of these
coherences are visibly distinct, especially
for lower value of external field. Solid
lines correspond to the absolute value
of K+−,−+(t)=K

A,+−
a (t)KB,−+

a (t) func-
tion from Eq. (2.62), i.e. the two-qubit
coherence ρ+−,−+(t) calculated assuming
uncorrelated narrowed baths. Sym-
bols correspond to the absolute value
of ρ+−,−+(t) calculated with the UC ap-
proach for correlated baths narrowed to
∆p = 0.4. The agreement of the lat-
ter with the solid lines is very good for
t̃ ≳ 1 (at shorter times the UC solu-
tion exhibits oscillations, see solid lines
in Fig. 2.7). The figure is reproduced
from Ref. [1].

show the evolution of C(t=τ1+τ2) after application of π pulses at τ1. In high enough
magnetic fields, at τ2 ≈ τ1 a partial entanglement recovery is observed. It is worth
stressing that the two-qubit coherence is always partially recovered at the echo time
(see the inset of Fig. 2.9), but the entanglement is regained only when magnetic
field is above a certain value, i.e. Ω̃ > 1. This effect can easily be understood:
in low magnetic fields, for Ω̃ < 1, the diagonal elements of the two-qubit density
operator are strongly perturbed, and partial recovery of coherence is not sufficient for
entanglement revival to occur, as follows from Eq. (1.5). For such a revival to occur
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Figure 2.9: Concurrence as a function
of time in the presence of echo π pulse
at t̃= 4 for different values of magnetic
field, calculated for an initial Bell state.
The calculation is performed within the
UC model assuming a single nuclear
species, on time scale of t≪ωα (so that
the values of ωα are irrelevant and in the
calculation they are assumed to be zero).
Note that for Ω̃= 0 and 1 the entangle-
ment does not revive at the echo time
of t̃=8. For larger Ω̃ the entanglement
is indeed revived by the echo procedure
and its maximal value grows with in-
creasing Ω̃. Inset: absolute value of nor-
malized two-qubit coherence vs. entan-
glement at the time of maximum of the
echo signal as a function of Ω̃. At lowest
magnetic fields, the amount of recovered
coherence is not large enough to lead to
a recovery of entanglement. The figure
is reproduced from Ref. [1].
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Figure 2.10: Concurrence at the maxi-
mum of echo-induced revival as a func-
tion of total echo sequence time for va-
rious magnetic fields calculated using
the UC approach. The electron spins
are initially in one of the Bell states and
interact with two separate baths consis-
ting of a single nuclear species. The fi-
gure is reproduced from Ref. [1].

the echoed coherence must fulfill the relation |ρab|>
√
ρccρdd, where ρcc and ρdd are

the occupations created by bath-induced qubit dynamics). In Fig. 2.10, dependence
of echo peak amplitude on the total sequence time 2τ̃ is shown. In higher magnetic
fields, Ω̃≫1, the entanglement of the system of homonuclear spins quickly, on time
scale of 2τ̃ ≈ 1, reduces by an amount ∝ 1/Ω̃2 and then it stays nearly constant.
This effect was discussed in Refs. [110, 165] where it has been shown that the echo
procedure removes almost perfectly the influence of transverse Overhauser fields on
electron spin coherence. It was shown in Ref. [165] that at longer times single-spin
echo signal of such a homonuclear system has a small-amplitude oscillation of C(t)
with frequency ω, therefore the echoed entanglement of two spin qubits will also
oscillate in the same manner. Finally, at much longer times the entanglement would
decay completely due to dephasing caused by intrabath dynamics induced by dipolar
interaction between nuclear spins [183, 184, 110, 185].
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2.5.5 Projection on a singlet and averaged teleportation fi-
delity as witnesses of decaying entanglement

Lastly, I show that other methods of proving the existence and quantifying the
amount of entanglement in the system of two electron spin qubits can be as useful
as the measure of entanglement (e.g. concurrence). In this subsection, the methods
introduced in Sec. 2.5.1 are analyzed, i.e. the measurement of an entanglement
witness related to the projection on one of the Bell states (say, singlet |Ψ−⟩) and
the measurement of the averaged quantum teleportation fidelity. These methods are
reasonable to use only when one has some prior knowledge of the character of the
mixed entangled state ρ̂(t), to which they will be applied. So, summing up the above
consideration of the time evolution of state of two electron spins initially being in
one of Bell states, one can state that:

• the X form of the two-qubit state is preserved during the whole evolution;

• only the initially nonzero coherence remains finite when free evolution is con-
sidered (in the case of spin echo this statement is only approximately true,
since the second coherence is in fact generated during the evolution, but its
magnitude is of the order of 1/Ω̃2 in high magnetic fields);

• initially zero occupations become finite (in high magnetic fields, of magnitude
of the order of 1/Ω̃2), and their values are approximately equal;

• initially nonzero coherence decays due to the dominantly pure-dephasing in-
fluence of the bath.

Therefore, the state ρ̂(t) is a Werner-like state with diminished coherence,

ρ̂(t) ≈


1−p(t)

4
0 0 0

0 1+p(t)
4

−|ρ23(t)|e−iγ(t) 0

0 −|ρ23(t)|eiγ(t) 1+p(t)
4

0

0 0 0 1−p(t)
4

 , (2.63)

where it is assumed that the initial state was |Ψ−⟩, p(t)≈ 1 − 2
(
KA

b (t) + KB
b (t)

)
(for a free evolution and assuming KQ,+

b ≈KQ,−
b ), and γ(t) is a possibly non-trivial

phase.
It should be stressed that the entanglement of these states depends only on the

modulus of ρ23(t). In the above density operator, in the case of free evolution and
high-temperature nuclear spin bath state, one has γ(t)=(ΩA−ΩB)t, so a non-trivial
phase appears when external magnetic field is non-uniform and there is a magnetic
field gradient between the QDs. Nuclear spin baths in narrowed states, apart from
direct change of ΩQ by a value corresponding to hzQ, give rise to another effect. In the
simplest configuration when hzQ = 0 and magnetic field gradient is off, due to the
presence of the phase term in Eq. (2.56), one has γ(t)=arctan(t/τA)−arctan(t/τB),
where τQ given in Eq. (2.57) depends on the bath size NQ. This results in non-
trivial phase dynamics in the case of non-identical QDs. Similar reasoning applies
for initial |Φ±⟩ state, for which one obtains γ(t)= (ΩA + ΩB)t in the thermal bath
case, so these states will always have a fast phase dynamics at finite magnetic field.
But when two-spin echo procedure is applied, γ=0.
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In the case γ=0, the witness proposed in Sec. 2.5.1, ŵS=1 − P̂S is an optimal
one [153], since it always detects entanglement when it is actually present in the
system. This fact for the maximally mixed bath case was previously discussed in
Ref. [162].

It is easy to see that ⟨ŵS⟩ = −1
2
C(t). Below, the expectation value PS(t) =

Tr
(
ρ̂(t)P̂S

)
will be shown. Analyzing that quantity, one should remember that

PS(t)> 1/2 confirms entanglement (and also estimates its amount quantitatively).
However, for γ(t) ̸=0, values below the threshold PS(t)<1/2 do not certify that the
state is necessarily separable. The projection onto the singlet state can be expressed
in terms of density operator elements: PS(t)= |ρ23(t)| cos γ(t) + (p(t) + 1)/4, while
C(t)=max[2|ρ23(t)| − (1− p(t))/2, 0].

The averaged quantum teleportation fidelity, used as an entanglement witness,
shows similar behavior. For concreteness, let us suppose that two qubits are initia-
lized in the state |Ψ−⟩. The teleportation protocol based on this assumption works
perfectly when two-qubit state ρ̂(t) corresponds to a pure state |Ψ−⟩.

If two-qubit state ρ̂AB(t) is of the X form, then the initial state |ψC⟩ = α|+⟩ +
β|−⟩ of qubit C transforms after teleportation (using protocol for singlet |Ψ−⟩) in
a state of qubit B:

ρ̂B(t) =

(
|α|2(ρ22 + ρ33) + |β|2(ρ11 + ρ44) −2(α∗βReρ14 + αβ∗Reρ23)
−2(αβ∗Reρ14 + α∗βReρ23) |α|2(ρ11 + ρ44) + |β|2(ρ22 + ρ33)

)
,

(2.64)
and the fidelity of teleportation of qubit C in state |ψC⟩ is

Fα,β = 2|α|2|β|2(ρ11 − ρ22 − ρ33 + ρ44)− 4|α|2|β|2Reρ23
+ ρ22 + ρ33 − 4Re

(
(αβ∗)2

)
Reρ14. (2.65)

By substituting the explicit form of density operator ρ̂(t) from Eq. (2.63) of qubits
A and B one obtains

Fα,β(t) = −2p(t)|αβ|2 + 4|αβ|2|ρ23(t)| cos γ(t) +
1 + p(t)

2
. (2.66)

Characteristically, the fidelity of teleportation of basis states (the only states with
no coherence, by definition), |+⟩ and |−⟩, does not require any coherence and is
determined by population function p(t) (it is equal to (1 + p)/2). Hence, measuring
the teleportation fidelity of a basis state instantly after the initialization the two-
qubit state in a Werner state gives the value of p. The teleportation fidelity averaged
over the teleported states is

F̄ (t) =
2

3
|ρ23(t)| cos γ(t) +

1

2
+
p(t)

6
. (2.67)

When γ=0, one has F̄ (t) = C(t)/3+2/3, therefore, when F̄ =2/3 the corresponding
ρ̂(t) state is separable. The nonzero γ(t) forces the averaged fidelity to oscillate bet-
ween 1/3 and 1. It is worth to note that if F̄ <1/2 then it means that the teleported
state is anticorrelated with the desired state, and it is a pronounced sign of using
the wrong assumption about the two-qubit state ρ̂(t) (i.e. using a wrong teleporta-
tion protocol). Projection onto the singlet state PS(t̃) and averaged teleportation
fidelity F̄ (t̃) in the case of γ=0 are shown for thermal and narrowed bath states in
Figs. 2.11 and 2.13, respectively.
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Figure 2.11: Concurrence C(t̃), projec-
tion on singlet PS(t̃), and averaged fi-
delity of teleportation F̄ (t̃) for two elec-
tron spins initially being in a singlet
state |Ψ−⟩ for the case of interaction
with two separate nuclear spin baths in
high-temperature states calculated using
the UC approach at Ω̃ = 5. The verti-
cal dotted line marks the time at which
the state becomes disentangled, while
the horizontal dotted lines at 0.5 and
2/3 correspond to values at which PS(t̃)
and F̄ (t̃), respectively, cease to indicate
the presence of entanglement. Time is in
units of two-dot T ∗

2 defined in Eq. (2.44),
and the dimensionless Zeeman splitting
is Ω̃ := ΩT ∗

2 . The figure is reproduced
from Ref. [1].
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Figure 2.12: Concurrence C(t̃), projec-
tion on |Φ+⟩ Bell state P|Φ+⟩(t̃), and
averaged fidelity of teleportation F̄ (t̃)
for two electron spins initially being in
|Φ+⟩ state for the case of interaction
with two separate nuclear spin baths
in thermal states calculated using the
UC approach for Ω̃ = 10. The figure is
reproduced from Ref. [1].
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Figure 2.13: The same as above, only for
narrowed state of A and B baths (each
having hzQ=0). The figure is reproduced
from Ref. [1].

From these figures, it is clear that the presented quantities contain the same
information about two-qubit entanglement as the concurrence does. The result for
PS(t̃) from Fig. 2.11 corresponds to moderate magnetic field (Ω̃ = 5), and it fills
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the gap between limiting cases of Ω̃≪ 1 and Ω̃≫ 1 which have been investigated
experimentally and theoretically in Ref. [58].

The effect of γ(t) ̸=0 is shown in Fig. 2.12, where the entanglement decay of |Φ+⟩
state is presented. The projection P|Φ+⟩(t) and averaged teleportation fidelity F̄ (t)
have been calculated assuming that |Φ+⟩ state is used during execution of cor-
responding procedures as the resource of entanglement. The results show strong
oscillatory behavior, but their envelopes are analogous to the results for |Ψ−⟩ state
(Fig. 2.11), and also contain information about the amount of two-qubit entangle-
ment. Finally, it is worth noticing that if phase dependence γ(t) is known, one can
employ an experimental procedure which results in projection onto (or teleportation
with) a “proper” state. On the other hand, if one knows γ(t), then one can perform
post-processing of experimental data in order to obtain the smooth decay curves.

2.6 Conclusions
In this chapter, the dynamics of the entanglement of two electron spin qubits inter-
acting with their nuclear spin baths was considered. Specifically, the influence of va-
rious states of the nuclear spin bath (e.g. high-temperature state, narrowed states,
correlated states) on the entanglement decay during free evolution and two-spin echo
procedure was investigated.

It has been shown that hyperfine interaction of two electron spins initially being
in a Bell state with the nuclear spin baths leads to forming of a Werner-like two-qubit
state: in moderate and high magnetic fields initial coherence reduces due to pure
dephasing, and initially absent populations get nonzero value ∝ 1/B2. The dyna-
mically generated admixture ∝ 1 manifests in appearance of entanglement sudden
death at finite time, when coherence is still present in the system. In moderate
magnetic fields, varying in time populations of electron spins interacting with nu-
clear baths in narrowed states may cause a revival of entanglement after its sudden
death. Using the quantum information terms, one can say that the entanglement
decay induced by the hyperfine interaction of electron spin qubits with nuclear spin
environment can be viewed as a non-Markovian phase damping quantum channel
with an admixture of generalized amplitude dumping corresponding to the infinite-
temperature environment. It has been shown that the entanglement dynamics of two
qubits interacting with nuclear spin baths in a correlated narrowed state can be re-
produced assuming uncorrelated states of the two baths with certain polarizations,
values of which correspond to the maximums in the weight distributions of polari-
zation pairs associated with a given correlated state.

It has been shown that the entanglement can be recovered by application of the
two-spin echo procedure. Local manipulations (π pulses) performed with qubits
allow to rephase two-qubit coherence and to revive their entanglement. This pro-
cedure, however, is efficient only in high enough external magnetic fields. There
exist the lowest strength of magnetic field (which equals approximately the typical
Overhauser field of QD), below which the procedure gives no effect at all.

Finally, it has been shown that considered decay of entanglement of two electron
spin qubits, initially being in a Bell state, can be detected and, what is more impor-
tant, quantified without experimentally demanding tomography of two-qubit state.
The level of two-qubit entanglement (e.g. concurrence) can be faithfully inferred
from measurement of entanglement witness (projection of the current two-qubit
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state on the initial, maximally entangled, one) or from measurement of the aver-
aged fidelity of state of the third qubit, which was teleported spending two-qubit
entanglement during execution of that operation. The entanglement of Werner-like
states generated from the initial Bell state during free evolution due to the hyper-
fine interaction of electron spins with nuclear spin baths is uniquely connected with
the results of the above-mentioned measurements, hence, in this particular system
these measurements detect the two-qubit entanglement and quantify it identically
as concurrence does.
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Chapter 3

Retardation of Entanglement Decay
of Two Spin Qubits
by Quantum Measurements

In this chapter, I study a system of two electron spins, each
interacting with its small nuclear spin environment. Such a sys-
tem can be viewed as a prototype system of two qubits that are
based on the spins of electrons localized in two quantum dots.
I propose a way to counteract the decay of entanglement of
such qubits by performing some manipulations on them (which
are within reach of experimentalists), e.g. repeatable quantum
projective measurements of these qubits. Unlike in the quan-
tum Zeno’s effect, the goal of the proposed manipulations is
not to freeze two qubits in their initial state and to preclude
any time evolution of the state by infinitely frequent quantum
measurements. Instead of that, performing a few cycles of free
evolution of the system for some time τ followed by a quantum
measurement of qubits subsystem with subsequent postselec-
tion of two-qubit state (the same as the initial one) produces
quantum correlations in the environments and also restores the
quantum correlations of qubits. By numerical calculation of the
system evolution (the full density operator ρ̂(t)), I show that,
in contrast to the fast decay of two-qubit entanglement which
occurs in case of free evolution, application of the proposed ma-
nipulation sequence gradually builds up coherences in the entire
system, and further decay of quantum correlations of two qubits
may be significantly slowed down for specific combinations of
cycle durations τ and numbers of performed cycles. The results
contained in this chapter have been presented at a few confe-
rences (see List of Conference Presentations on p. 129) and are
publicly available as a preprint [186].



78
3: Retardation of Entanglement Decay of Two Spin Qubits

by Quantum Measurements

3.1 Introduction

Spin of an electron localized on a QD in a semiconductor nanostructure is a promis-
ing physical realization of qubit as it can be reliably initialized, manipulated, and
read out [47, 48, 55]. To be a useful element of a quantum computer, such a qubit
must fulfill, among others, the criterion of long decoherence times [73, 187]. Provid-
ing no manipulations aimed at mitigation of the influence exerted by the environment
on the spin qubits have been applied, coherences as well as quantum correlations of
electron spin QD qubits decay on a nanosecond time scale [47, 48, 108]. The main
factor of such a fast decay is the Fermi contact hyperfine interaction of electron spin
with nuclear spins of atoms from which the nanostructure is built [162, 1].

There have already been proposed and implemented in experiment a few strate-
gies to enhance the decoherence times of electron spin, such as: dynamical decoup-
ling of spin qubits from their environments [140]; preparing an artificial state of
environment (so-called narrowed state of nuclear spin bath) [120]; or simply making
use of materials which are made of atoms with spinless nuclei, e.g. isotopically-
purified 28Si [188]. All these strategies can be summarized as: avoiding as much as
possible any interaction of the qubits with their environments.

In this chapter I propose another strategy to counteract the decoherence and,
as a consequence, to inhibit the decay of quantum correlations of two electron spin
qubits. I explore the process of transfer of coherences and quantum correlations
from a pair of entangled electron spin qubits to the environment, combined with
quantum measurements of the qubits’ subsystem. Provided that the evolution of
the system is non-Markovian, i.e. it preserves some memory of past interactions, it
turns out that the environment, being in a quantum state obtained after a period
of free evolution of the system, can dephase the qubits with a lower rate. Using a
simple model of a system of two electron spin QD qubits, presented in Sec. 3.2, I in-
vestigate the effect of application of the manipulation procedure described in Sec. 3.3
on dynamics of entanglement decay. Results are discussed in Sec. 3.4, where it is
shown that both parts of the procedure, namely, free evolution of the system and
quantum measurement of the qubits’ subsystem with subsequent postselection of
the two-qubit quantum state, are equally important, and that only for specific com-
binations of durations τ of free evolution periods and number n of cycles, significant
retardation of entanglement decay can be achieved.

I would like to stress that the proposed manipulation procedure is not a realiza-
tion of the quantum Zeno’s effect [189]. Here, the goal is not to freeze qubits in their
initial state and to preclude any time evolution of the state by infinitely frequent
quantum measurements. Instead of that, we let qubits interact with their environ-
ments and transfer to them some coherences and quantum correlations during the
evolution of the joint system.

3.2 The Model of Electron Spin Quantum Dot Qubits

To begin with, I describe the model of electron spin QD qubits, which will be
used to illustrate the proposed manipulation sequence. I consider a system of two
semiconductor QDs (e.g. gated QDs created in AlGaAs/GaAs nanostructure or self-
assembled InGaAs QDs), each of which has a localized electron. Since such systems
are usually operated at low temperatures, I suppose that electrons are in their
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ground orbitals. In such a case, one can exclude from further consideration the
spatial part of the electron’s wave functions and focus only on the spin part of the
wave functions.

3.2.1 Two non-interacting quantum dots

For the sake of clarity, I first assume that during periods of free evolution of the
system there is no interdot interaction, which could create some entanglement bet-
ween the two QDs and, especially, between electron spins (e.g. electrons are strongly
localized in QDs because of a high enough inter-QD potential barrier or relatively
long distance between the QDs and the electron wave functions hardly overlap, so
no interaction between the two electron spins occurs). It is worth mentioning that
we will be analyzing the behavior of entanglement on the timescale from 0 to a
few T ∗

2 (see Eq. (3.21) for the definition of T ∗
2 ). For such short times no part of

the interaction Hamiltonian, apart from the Fermi contact hyperfine interaction of
electron spin with nuclear spins from its environment, is essential, because it does
not manifest at short times (e.g. the energies of dipolar or quadrupolar interaction
of nuclear spins are orders of magnitude lower than energy of hyperfine interaction),
whereas the Fermi contact hyperfine interaction leads to the fast complete decay of
entanglement initially present in the electron spins subsystem in any finite (including
zero) magnetic field, as shown in the previous Chapter (see Fig. 2.1).

Thus, the Hamiltonian of the DQD system has the form:

ĤDQD = Ĥ
(1)
QD ⊗ 1+ 1⊗ Ĥ

(2)
QD. (3.1)

The Hamiltonian Ĥ(i)
QD of a single QD contains the following terms:

Ĥ
(i)
QD = Ĥ

(i)
el. + Ĥ

(i)
nucl. env. + Ĥ

(i)
int.. (3.2)

The first and the second terms of Ĥ(i)
QD are the Zeeman energies of electron spin and

its nuclear spin environment (NSE), respectively:

Ĥel. = ΩŜz ⊗ 1⊗N , (3.3)

where Ω = geff.µBBz is the Zeeman splitting of electron spin, geff. is the effective
g-factor of electron spin, µB is the Bohr magneton, Bz is z component of external
magnetic field, Ŝz is the operator of the z-component of electron spin, N is the
number of nuclear spins interacting with the electron spin. For the sake of simplicity,
I have also adopted the assumption that all the nuclear spins are of the same type
J , so the identity operator 1 used above is of dimension 2J + 1.

Ĥnucl. env. = 1el. ⊗
N∑

n=1

ω(n)1⊗(n−1) ⊗ Ĵ (n)
z ⊗ 1⊗(N−n), (3.4)

where ω(n) = g(n)µNBz is the Zeeman splitting of nth nuclear spin, g(n) in the
nuclear g-factor of nth nuclear spin, µN is the nuclear magneton, and 1el. is the
identity operator of the electron spin subspace.

The last term of the Hamiltonian Ĥ(i)
QD is the hyperfine interaction between elect-

ron spin and nuclear spins:

Ĥint. =
N∑

n=1

AnŜ⊗ 1⊗(n−1) ⊗ Ĵ(n) ⊗ 1⊗(N−n), (3.5)
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where Ŝ =
(
Ŝx, Ŝy, Ŝz

)
is the electron spin operator, Ĵ(n) =

(
Ĵ
(n)
x , Ĵ

(n)
y , Ĵ

(n)
z

)
is the

spin operator of nth nucleus and An is the hyperfine coupling between electron spin
and the nth nuclear spin.

3.2.2 Two quantum dots with coupled electron spins

When electrons are close enough to each other their wave functions noticeably over-
lap, which leads to appearance of two more terms of spin interactions: on one hand,
the Hamiltonian of the system will acquire a term describing exchange interaction
of electron spins, on the other hand, in such a system configuration each electron
spin will interact with at least a few nuclear spins belonging to another QD, and
thus electron spins become coupled indirectly through their common environment.
Now, the Hamiltonian of the DQD system has the following terms:

Ĥ full
DQD = Ĥel.1 + Ĥel.2 + Ĥnucl.env.

+ Ĥel.1−nucl.env.int. + Ĥel.2−nucl.env.int.

+ Ĥel.1−el.2 int.. (3.6)

All terms of the Hamiltonian, apart from the last term, which is a new one, have
almost the same forms as previously (cf. Eqs. (3.2), (3.3), (3.4), (3.5)), with change
of meaning of parameter N , which denotes now the number of all nuclear spins in
the system, N = N1 +N2, where Ni is the number of nuclear spins in the ith QD:

Ĥel.1 = Ω(1)Ŝ(1)
z ⊗ 1el. ⊗ 1⊗N , (3.7)

Ĥel.2 = Ω(2)1el. ⊗ Ŝ(2)
z ⊗ 1⊗N , (3.8)

Ĥnucl. env. = 1⊗2
el. ⊗

N∑
n=1

ω(n)1⊗(n−1) ⊗ Ĵ (n)
z ⊗ 1⊗(N−n), (3.9)

Ĥel.1−nucl.env.int. =
N∑

n=1

A(1)
n Ŝ(1) ⊗ 1el. ⊗ 1⊗(n−1) ⊗ Ĵ(n) ⊗ 1⊗(N−n), (3.10)

Ĥel.2−nucl.env.int. =
N∑

n=1

A(2)
n 1el ⊗ Ŝ(2) ⊗ 1⊗(n−1) ⊗ Ĵ(n) ⊗ 1⊗(N−n). (3.11)

It is reasonable to assume that interaction between two electron spins in the con-
sidered system is of the form of Heisenberg exchange Hamiltonian with an isotropic
constant coupling A0 [73]:

Ĥel.1−el.2 int. = A0 Ŝ
(1) ⊗ Ŝ(2) ⊗ 1⊗N . (3.12)

It is worth noting here the obvious fact about the Hamiltonian Ĥ full
DQD (Eq. (3.6))

that when the coupling A0 between electron spins is greater than the energy of



3: Retardation of Entanglement Decay of Two Spin Qubits
by Quantum Measurements 81

interaction of these electron spins with their nuclear environments (A0 > A1,A2

where Ai :=
∑N

n=1A
(i)
n is the total energy of hyperfine interaction), the exchange

interaction between electron spins helps to preserve initially present entanglement
between electron spins. In the extreme case, when Ĥel.1−el.2 int. (Eq. (3.12)) is the
leading interaction term of the Hamiltonian Ĥ full

DQD (Eq. (3.6)), two electron spins
initially being in singlet or unpolarized triplet state do not lose their coherence much
during the evolution and remain in a state that is close to the initial one, because
singlet and triplet states of electron spins turn out to be close to the eigenstates of
the Hamiltonian Ĥ full

DQD (Eq. (3.6)). Therefore, the level of two-qubit entanglement
stays quite high and does not decay significantly during the evolution of the system,
so any manipulation aimed at inhibition of the decay of entanglement is hardly
needed in that case.

3.3 Manipulation Procedure with Quantum Mea-
surements and Postselection of Two-Qubit State

Motivated by experimentalists’ capabilities to initialize localized in QDs electrons in
singlet state and to perform projective measurements onto singlet state [47, 48, 190],
I consider a quantum measurement of two electron spins subsystem (hereinafter
referred to as TESS or, simply, two qubits), specifically, the measurement answering
whether TESS is in a certain two-qubit state or not. In general, such a quantum
measurement can be described by the measurement operators M̂1 (“yes” result) and
M̂2 (“no” result):

M̂1 =
√
k Π̂2q ⊗ 12env +

√
1− k

(
1− Π̂2q ⊗ 12env

)
, (3.13)

M̂2 =
√
1− k Π̂2q ⊗ 12env +

√
k
(
1− Π̂2q ⊗ 12env

)
. (3.14)

where Π̂2q is a projector in two-qubit subspace onto a chosen two-qubit state, pa-
rameter k ∈ [1

2
, 1] is a strength of the measurement, 1 is the identity operator of

dimension of the system’s state space, and 12env is the identity operator of dimen-
sion of the environment (two NSEs) subsystem’s state space. The extreme values of
the quantum measurement strength have clear physical meanings: k = 1 corresponds
to the case of measurement of the highest strength, i.e. the projective measurement,

M̂1 = Π̂2q ⊗ 12env, (3.15)

M̂2 = 1− Π̂2q ⊗ 12env, (3.16)

and k = 1
2

corresponds to the case of completely ineffective measurement,

M̂1 = M̂2 =
1√
2
1. (3.17)

The intermediate values of strength k correspond to such quantum measurements
that give the outcomes which are the probabilistic mixture of the outcomes of pro-
jective operators Π̂2q ⊗ 12env and 1 − Π̂2q ⊗ 12env, i.e. the fidelity of the outcomes,
compared with that of projective measurement, is determined by the measurement
strength and is equal to k. By construction, the measurement operators M̂1, M̂2

fulfill the completeness relation
∑2

i=1 M̂
†
i M̂i ≡ 1 for any k from its range.
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Initiali-
zation Meas. 1

ρ0(0) ρ0(τ)
ρ1(0)

ρ1(τ) ρn-1(τ)
yes

τ
no

τ

Meas. 2

ρ2(0)yes

no
Meas. n

yes

no

ρn(0)
ρn(t)

Figure 3.1: Schematic representation of the proposed manipulation sequence with
quantum measurements and postselection of the two-qubit state. The procedure
begins from initialization of the system in the state ρ̂0(0), which contains maximally
entangled two-qubit state. Next, free evolution is allowed for a time period τ ,
at the end of which the state ρ̂0(τ) is obtained. System being in that state is
measured (specifically, the projection of the actual two-qubit state on the initial
one is performed), that produces one of two possible outcomes. The “yes” outcome,
referred to as ρ̂1(0) state, is a useful state for possible further repetition of the
described manipulation cycle of free evolution followed by the measurement or for
immediate use as a quantum resource. When “no” result is obtained, i.e. the run of
the procedure has not delivered the desired quantum state, the run is interrupted.

The manipulation procedure consists of initialization of the system in its initial
state and a few manipulation cycles. The manipulation cycle, in turn, has two parts:
free evolution of the system for a period τ and execution of quantum measurement
with subsequent postselection of two-qubit state. The idea of the manipulation
procedure is shown in Fig. 3.1. First, the system is initialized in a state ρ̂ini =
ρ̂2q(0)⊗ ρ̂2env(0) =: ρ̂0(0). The initial two-qubit state, ρ̂2q(0), is supposed to be a
maximally entangled state, whereas NSEs usually are in a high-temperature state
[108], which has no coherences at all (if no manipulations have been performed
on them beforehand). Such a choice of NSE initial state is physically motivated:
even low temperatures of the order of a few tens mK, at which experiments with
QDs are routinely performed, are already sufficiently high for nuclear spins due
to the smallness of their Zeeman energies or dipolar interaction compared to kBT
in typical experimental conditions. Thus, the initial state of NSEs has the form
ρ̂2env(0) = ρ̂env1(0)⊗ ρ̂env2(0), where ρ̂envi(0) =

1
Zi
1, Zi = (2J + 1)Ni , i = 1, 2.

After initialization, we let the system freely evolve for some period τ obtaining
the state ρ̂0(τ) = Û(τ)ρ̂0(0)Û

†(τ), where Û(τ) := exp
(
− i

ℏĤτ
)
. Next, the quan-

tum measurement of TESS is performed producing, according to the measurement
postulate of quantum mechanics [3], in an indeterministic way, one of two possible
states

ρ̂yes
1 (0) :=

M̂1ρ̂0(τ)M̂
†
1

Tr
(
M̂1ρ̂0(τ)M̂

†
1

) (3.18)

or

ρ̂no
1 (0) :=

M̂2ρ̂0(τ)M̂
†
2

Tr
(
M̂2ρ̂0(τ)M̂

†
2

) (3.19)

with probabilities calculated according to the Born’s rule pyes = Tr
(
M̂1ρ̂0(τ)M̂

†
1

)
and pno = Tr

(
M̂2ρ̂0(τ)M̂

†
2

)
, respectively.



3: Retardation of Entanglement Decay of Two Spin Qubits
by Quantum Measurements 83

The state ρ̂yes1 (0), which corresponds to the operator M̂1, is postselected for
further manipulations. If the outcome of the measurement happens to be the state
ρ̂no1 (0), then it is rejected and execution of the manipulation procedure is interrupted.
After successful execution of the nth manipulation cycle, the state

ρ̂n(0) :=
ρ̂M̂1
n (0)

Tr
(
ρ̂M̂1
n (0)

) , (3.20)

where ρ̂M̂1
n (0) := M̂1ρ̂n−1(τ)M̂

†
1 , is obtained, for which I study the dynamics of its

two-qubit entanglement.

3.4 Results and Discussion

I would like to note that it is crucial in the simulations to keep the density operator
of the whole system, ρ̂n(t), and not to reduce it to the two-qubit density operator
ρ̂2q(t) by tracing out NSEs. Having at hand the full density operator, one can
investigate the transfer of coherences and quantum correlations in the system to the
greatest degree. As the dimension of the system state space grows exponentially
with the number of nuclear spins, our capabilities to simulate application of the
proposed manipulation procedure are limited to small systems, so I present here the
results obtained for the system of two QDs with homonuclear (J = 1

2
) NSEs of the

same size N1 = N2 = 5.
In the simulations, as an initial two-qubit state I have used singlet state, ρ̂2q(0) =

|ψ−⟩⟨ψ−|, where |ψ−⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩), which is the easiest for initialization two-

qubit state of two electron spins in a DQD. The projector operator Π̂2q has also
been chosen to be the projector onto singlet state, Π̂2q= |ψ−⟩⟨ψ−|.

To quantify the amount of entanglement of two-qubit state ρ̂2q, I use concurrence
[21]. I also use negativity [23] to estimate the level of entanglement between two
parts of the system. I show below that of particular interest is the negativity between
TESS and NSEs.

While considering the quantum correlation dynamics, it is convenient for further
analysis to express time in units of two-qubit T ∗

2 defined as follows (see Eq. (2.44))

1(
T ∗
2

)2 = 1(
T

∗(1)
2

)2 +
1(

T
∗(2)
2

)2 , (3.21)

where T ∗(i)
2 is the single-qubit dephasing time, for nuclear spin environment consis-

ting of spins J = 1
2

the single-qubit dephasing time is given by T ∗(i)
2 =

√
8ℏ/
√∑Ni

n=1

(
A

(i)
n

)2
.

The decay of entanglement of two electron spin qubits plotted using time unit of
T ∗
2 is independent of the system size and the magnitude of the hyperfine interaction

(see Chapter 2).
The results of simulations, which are shown in figures 3.2–3.5, have been obtained

for the system being in moderate magnetic field, Ω = 5
[

ℏ
T ∗
2

]
. In Fig. 3.2 the time

dependencies of concurrence of two-qubit state (top panel) and negativity (bottom
panel) are shown for a few different numbers n of performed cycles. As can be seen
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Figure 3.2: Concurrence of two-qubit state ρ̂2q(t) and negativity calculated for the
system state ρ̂n(t) divided into two parts, TESS and NSEs, as functions of time t
after the last projective measurement (PM). NSEs consist of N1 = N2 = 5 uniformly
coupled spins 1

2
. The system is in moderate magnetic field, Ω = 5

[
ℏ
T ∗
2

]
. The

projective measurements are performed after the period of system evolution τ = 2T ∗
2 .

from the top panel of Fig. 3.2, normally entanglement is completely lost at time
t ≈ 1.5T ∗

2 , but application of just a single manipulation cycle causes a significant rise
of the entanglement level at all times in the presented range and noticeably retards
its decay. With increasing number n of performed cycles, the level of entanglement
systematically grows, reaching almost its maximal value. Along with the decay of
entanglement in TESS, one can see the appearance of entanglement between initially
uncorrelated parts of the system, namely, between TESS and their NSEs (see bottom
panel of Fig. 3.2).

In order to estimate the effect of retardation of entanglement decay produced by
application of the manipulation procedure, I monitor the level of concurrence calcu-
lated for t = 2T ∗

2 , which is shown in Fig. 3.3, as a function of number n of performed
projective measurements and period τ between them. Using this map, one can find
the optimal values of the parameters n and τ , which maximize the retardation of
entanglement decay. On one hand, increasing the number of manipulation cycles
almost always enhances the effect, on the other hand, it turns out that there exists
the optimal duration τ of the free evolution periods, which is τopt. ≈ 2T ∗

2 for the
simulated system.

The probability to obtain the desired state ρ̂n(0), which is shown in left panel
of Fig. 3.4, decreases monotonically with number n of performed cycles due to the
fact that in each cycle the probability to obtain the postselected two-qubit state
which is the same as the initial one is strongly less than one. It is also worth noting
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Figure 3.3: Concurrence calculated for ρ̂2q(t = 2T ∗
2 ) as a function of number n of

performed projective measurements and period τ between them. NSEs consist of
N1 = N2 = 5 uniformly coupled spins 1

2
. The system is in moderate magnetic field,

Ω = 5
[

ℏ
T ∗
2

]
.

that probability of ρ̂n(0) decreases sub-exponentially with increasing n, so it drops
relatively slowly and it is at the level of a few percent after execution of about n = 20
cycles.

In the right panel of Fig. 3.4, it can be seen that, after a fast decrease, for longer
cycle durations τ > T ∗

2 the probability of ρ̂n(0) becomes a weakly dependent function
of τ for a fixed parameter n and slightly oscillates around the corresponding mean
value.

For practical purposes, one should choose an optimal combination of procedure
parameters n and τ such that maximizes simultaneously the effect of retardation of
entanglement decay (see Fig. 3.3) and the probability to obtain such a state (see
map in Fig. 3.4).

In Fig. 3.5 the dependence of intensity of the effect on strength k of quantum
measurement used in the manipulation procedure is shown. It turns out that with
increasing parameter n concurrence of two-qubit state, as a function of k, gradually
develops a plateau at nearly maximal level possible for a given value of n. The
plateau is situated between k = 1 and some lower value of k, and for increasing
parameter n, it progressively reaches surprisingly low values of k. Thus, long se-
quences of manipulation cycles lower requirement for the strength k of quantum
measurement with practically no loss in the end effect. From a practical point of
view, when dealing with a concrete experimental realization of the physical system,
in which the strength k of quantum measurements is limited by a certain constant
value, this value sets the minimal number n of quantum measurements that will
produce a noticeable effect of retardation of the entanglement decay. As can be seen
from the map in Fig. 3.5, for k = 1 the significant effect is already obtained for ma-
nipulation sequence with n = 3, whereas low values of k require to be compensated
by large number n of cycles of the procedure (e.g. when k ≈ 0.6 the effect starts to
be noticeable after application of the manipulation procedure with n = 20).
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Figure 3.4: (a) Probability to obtain the state ρ̂n(0) as a function of number n of
performed projective measurements and period τ between them.
(b), (c) Cross-sections of the map (a): Probability to obtain the state ρ̂n(0) as a
function of number n of performed projective measurements (b) and as a function
of period τ between projective measurements (c). NSEs consist of N1 = N2 = 5

uniformly coupled spins 1
2
. The system is in moderate magnetic field, Ω = 5

[
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]
.

The possibility to significantly retard entanglement decay by performing the ma-
nipulations with quantum measurements originates from the non-Markovian dyna-
mics of the system [116, 191]. During free evolution, electron spins, initially being in
an entangled state, transfer through the hyperfine interaction some of their quantum
correlations to the nuclear spin environments. Execution of the quantum measure-
ment of two-electron spin subsystem with subsequent postselection of two-electron
spin state restores its quantum correlations. The state of nuclear spin subsystems,
conditioned on past dynamics, in turn, preserves the quantum correlations previously
obtained from the electron spins, and thus, the flow rate of quantum correlations
from the electron spins to nuclear spin environments in following instants of the
system evolution may be reduced, which is manifested as the retardation of electron
spin entanglement decay.

Possible overlap of the electrons’ wave functions, which makes electrons coupled
directly as well as indirectly through the common nuclear spin environment, does not
rule out the effect of retardation of two-qubit entanglement decay of the proposed
procedure (see Fig. 3.6), it causes minor deviations of the level of entanglement
compared to the case of non-interacting electrons. It is worth to stress that if
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Figure 3.5: (a) Concurrence of the two-qubit state ρ̂2q(t) calculated at t = 2T ∗
2

as a function of number n of quantum measurements (QM) performed with pe-
riod τ = 2T ∗

2 and their strength k.
(b) Cross-section of the map (a): Concurrence of the two-qubit state ρ̂2q(t) calcu-
lated at t = 2T ∗

2 as a function of strength k of quantum measurements performed
with period τ = 2T ∗

2 . NSEs consist of N1 = N2 = 5 spins 1
2
. The system is in

moderate magnetic field, Ω = 5
[
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]
.

the overlap of the electrons’ wave functions is high, then one cannot consider such
electrons as individual qubits as they will tend to transit to a state close to an
eigenstate of their interaction Hamiltonian. So, starting initially from the singlet
state qubits will indeed maintain entanglement between each other at high level
(even without application of the procedure) but at the same time strong coupling
will significantly disturb fidelity of single-qubit operations, which one unavoidably
needs in order to perform any quantum computations. For that reason, when one is
going to use single electron spins as qubits, after their initialization (e.g. in pairs in
singlet state) electrons need to be kept well-separated from each other, whereas two-
qubit interaction will be switched on only for specific periods to perform intended
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Figure 3.6: Concurrence of the two-qubit state ρ̂2q(t) as a function of time t after
the last projective measurement (PM): top panel – no PM, middle panel – 1 PM,
bottom panel – 20 PMs. Solid and dashed lines correspond to system evolutions
under the hyperfine Hamiltonian with separate nuclear spin environments, whereas
dash dotted and dash double-dotted lines correspond to the system evolutions when
each electron spin is also coupled to the nuclear spin environment of the another
electron spin at the level of 10% of the coupling to nuclear spins from its own QD.
Dashed and dash double-dotted lines shows the concurrence of the system in which
the direct interaction between electron spins is present

(
at the level of 10% of the

total coupling between the electron spin and the nuclear spins, A0 = 0.1
∑N

i=1A
(1)
i =

0.1
∑N

i=1A
(2)
i

)
. NSEs consist of N1 = N2 = 5 spins 1

2
. The system is in moderate

magnetic field, Ω = 5
[

ℏ
T ∗
2

]
. The projective measurements are performed after the

period of system evolution τ = 2T ∗
2 .

two-qubit operations. Therefore, the approximation of non-interacting electron spin
qubits considered in Sec. 3.2.1 is the basic scenario. On the other hand, simulations
indicate that presence of either kind of interdot interactions increases the success rate
of the proposed procedure, e.g. for the system described in Fig. 3.6 the success rate
of the procedure consisting of 20 cycles with τ = 2T ∗

2 with projective measurement
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is about 6% when no interdot interaction is present, and raises to about 7% for the
system with direct electron–electron interaction, or about 9% for the system with
common nuclear spin environment, and about 10% when both kinds of interactions
take place in the system.

3.5 Conclusions
In contrast to the fast decay of two-qubit entanglement on a time scale of the order of
T ∗
2 (shown in Fig. 1 of Ref. [162] or here in Fig. 2.1 [1] and Figs. 3.2, 3.6), performing

a few cycles of evolution of initially entangled two electron spin qubits interacting
with their nuclear spin environments, followed by quantum measurement performed
on two-qubit subsystem, gradually builds up coherences in the entire system, and
further decay of quantum correlations of two qubits may be significantly slowed
down for specific cycle durations τ and numbers n of the performed cycles.

The effect shown here differs significantly from the quantum Zeno’s effect, as
the desired inhibition of quantum correlation decay maximizes only for some cycle
durations τ > 0 and is absent in the limit of continuous monitoring of two-qubit
state, τ = 0, since the described mechanism is based on the transfer of quantum cor-
relation initially contained in two-qubit subsystem to its environment. This process
needs some time to occur, and it is blocked in the limit of continuous monitoring of
two-qubit state (τ = 0).

The disadvantage of such a way of counteracting the decoherence is the necessity
to postselect the proper two-qubit state after each quantum measurement and the
associated with that decreasing overall probability of success. On the other hand,
the probability to obtain the desired state ρ̂n(t) decreases sub-exponentially with n.

The strong (projective) measurements produce maximal effect of retardation
of entanglement decay, but the effect can be also achieved in the case of weak
measurements. The more cycles have been performed (the larger n), the weaker
quantum measurements can be used to achieve a nearly maximal effect.

Since the proposed procedure of retardation of entanglement decay requires only
execution of the quantum measurements of two-electron subsystem, its practical re-
alization seems to be much easier than execution of dynamical decoupling of qubits
from their environments or preparation of a narrowed nuclear spin bath state, but
due to the indeterminacy involved in the manipulation procedure, only a fraction
of executed runs will give the desired state ρ̂n(0), and, therefore, it is not the most
convenient way to counteract the decoherence. On the other hand, simulations show
that when one applies the manipulation procedure with number of cycles n ⩾ 10,
the quantum measurement need not be of projective type (k = 1) anymore, it can
be of moderate strength (k ≈ 0.8), and the probability to obtain the desired state
ρ̂n(0), which will exhibit a slower decay of entanglement, is pretty large (about
10%). Thus, it may be viewed of fundamental interest to implement such a manipu-
lation procedure in currently existing systems of electron spin QD qubits in order to
check experimentally whether predicted effect of retardation of entanglement decay
is achievable in real systems.
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Chapter 4

Dynamical Generation of
Entanglement
of Two Singlet-Triplet Qubits

In this chapter, I analyze in detail a procedure of entangling
of two singlet-triplet (S-T0) qubits operated in a regime when
energy associated with the magnetic field gradient, ∆Bz, is an
order of magnitude smaller than the exchange energy, J , bet-
ween singlet and triplet states [66]. I have studied theoretically
a single S-T0 qubit in free induction (FID) and spin echo (SE)
experiments. I have obtained analytical expressions for time
dependence of components of its Bloch vector for quasistatical
fluctuations of ∆Bz and quasistatical or dynamical 1/fβ-type
fluctuations of J . I have then considered the impact of fluc-
tuations of these parameters on the efficiency of the entang-
ling procedure which uses an Ising-type coupling between two
S-T0 qubits. In particular, I have obtained the analytical ex-
pression for the evolution of two qubits affected by 1/fβ-type
fluctuations of J . This expression indicates the maximal level
of entanglement that can be generated by performing the en-
tangling procedure. This results deliver also an evidence that
in the above-mentioned experiment S-T0 qubits were affected
by uncorrelated 1/fβ charge noises. The results contained in
this chapter have been presented at a few conferences (see List
of Conference Presentations on p. 129).
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4.1 Introduction

Spin qubits based on gated quantum dots [47, 192, 48] can be initialized, coherently
controlled, and read out. Qubits based on a spin of a single electron [73] localized in
a QD can be controlled with electron-spin resonance techniques [77, 193, 194], while
two-qubit gates can be performed with the help of exchange interaction [73, 78, 195],
which is controlled electrically [58, 65, 196, 197, 84, 198, 199]. Implementation of
single-spin control with ac electric [193, 194, 200] and magnetic [77, 65] fields is
nevertheless experimentally challenging, especially in GaAs based QDs, in which
interaction with nuclei [201, 108, 202, 144] leads to significant broadening of electron
spin resonance lines (this is in contrast to experimental situation in Si-based single-
electron QDs [203, 204, 50], for which nuclear noise can be removed by isotopic
purification [50, 205]). Research on all-electrical control (possibly without ac fields)
is an active field. Such a control is possible for spin qubits based on a few electrons
localized in multiple quantum dots [192]. In a double quantum dot (DQD) containing
two electrons one can easily initialize and partially control a qubit, whose logical
states correspond to singlet S and unpolarized triplet T0 formed by the two electrons
[58] (note that one can as well use two QDs with larger odd number of electrons per
dot [206]), and all-electrical ac control is also possible in a variety of other designs
based on two [207], three [208, 209, 210] and four [211] electrons. I focus here on the
DQD-based two-electron singlet-triplet (S-T0) qubit, for which full electrical control
over the state of the qubit is possible when the spin splittings of electrons localized
in the two dots are distinct. This can be achieved with creation of a gradient of
nuclear spin polarization [120, 159] in nuclear spin rich material such as GaAs or
with the help of micromagnets creating a gradient of magnetic field [65].

Creation of entanglement [6, 7] of two spin-based qubits is the next necessary step
in development of a QD spin qubit platform for quantum information processing. For
two single-spin qubits, exchange interaction leads to creation of entangled two-qubit
states [65, 64, 198, 196], while in the case of S-T0 qubits it is the electric dipole-
dipole (capacitive) interaction [212] that has been most commonly used for interqubit
coupling [61, 66] (although exchange coupling could be used too [213, 214, 215]).
Our focus in the this chapter is on creation of entanglement and its evolution due
to capacitive interqubit interaction, as it was demonstrated experimentally for two
S-T0 qubits in Ref. [66].

Interaction of qubits with their environments that fluctuate in an uncontrolled
manner leads to decoherence [20] of their quantum states. In this process, the
entanglement, which requires existence of a coherent superposition of at least two
product states of the two qubits, is also destroyed [7]. For single electron spins in
QDs, the dominant cause of entanglement decay is their hyperfine interaction with
the nuclear baths [162, 1]. Decoherence of S-T0 qubits, on the other hand, can
be dominated by the nuclear bath at low singlet-triplet splitting [140], but for large
splittings it is mostly caused by charge noise [216, 217, 151], with the nuclear-induced
decay [218, 177] possibly playing a role when the fluctuations of S-T0 splitting are
suppressed [86]. Influence of quasistatic charge and nuclear noises on the simplest
protocol of generation of entanglement of two capacitively coupled S-T0 qubits was
considered in Ref. [219]. In this chapter I consider a more involved protocol from
Ref. [66] under the influence of dynamical charge noise.

In the experiment [66], the two S-T0 qubits were initialized in a separable state,
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and subsequently they were evolving in the presence of a finite singlet-triplet split-
ting J . With both qubits having nonzero J , dipolar interaction between them leads
to the appearance of an Ising-type interaction, which in the decoherence-free case
would lead to periodic creation of maximal two-qubit entanglement. In the experi-
ment, only one period of such entanglement oscillation (with entanglement reaching
only a fraction of its maximal possible value) is visible. Furthermore, for the entan-
glement to be nonzero the two qubits have to be subjected to a spin echo refocusing
pulse that removes the influence of the slowest environmental fluctuations on their
evolution. The strong decoherence is significantly affecting the entanglement gen-
eration and evolution. The goal of this study is to understand processes originated
from nuclear polarization fluctuations and charge noise affecting the singlet-triplet
splittings which limit the ability to generate entangled two-qubit states for experi-
mental protocol performed in Ref. [66]. The main conclusion of this study is that
the spin echo protocol removes most of the influence of the nuclear polarization fluc-
tuations, and the observed decoherence is caused by charge noise. The experimental
data from Ref. [66] is consistent with the assumption that each qubit is subjected to
1/fβ charge noise with β≲1 (as seen for a single S-T0 qubit [151]), and the noises
affecting the two qubits are independent. I also discuss the qualitative difference
in the character of the dominant decoherence process between the cases of small
β ≲ 1 and large β > 1 – in the former case the imperfectly echoed-out single-qubit
noise has dominant influence, while in the latter case of very low frequency noise the
fluctuations of two-qubit coupling are the main reason for imperfect entanglement.

The chapter is organized as follows. In Sec. 4.2 I give an overview of the physics
of a single S-T0 qubit, and discuss the influence of fluctuating external magnetic
or electric fields on the decoherence of such qubit seen in the free induction decay
(FID) as well as spin echo (SE) experiments. In Sec. 4.3 I recall a procedure that
has been designed for entangling two S-T0 qubits [66]. I briefly discuss ways of
entanglement quantification that have been applied to the system of two qubits in
Sec. 4.4. In Sec. 4.5 I then analyze the influence of the above-mentioned factors
that lead to decoherence on the efficiency of the procedure of entangling of two S-T0
qubits. I show there that a dynamically fluctuating electric field affecting qubits’
exchange splittings may limit the maximal level of two-qubit state entanglement by
destroying two-qubit entangling gate or simply by dephasing of individual qubits.
Finally, Sec. 4.6 closes the chapter with a discussion of conclusions on the nature of
charge noise in the system studied in Ref. [66] that one can draw by comparing the
results of present calculation to the observations described there. In the appendices
(p. 122) I present explicit expressions that describe the averaged values of S-T0
qubit components as functions of the duration of free induction decay and spin echo
experiments as well as attenuation factors originated from 1/fβ dynamical noise of
exchange splittings of the qubits.

4.2 The Physics of a Singlet-Triplet Qubit

4.2.1 The Hamiltonian and control over the qubit

In a singlet-triplet qubit, the quantum state is stored in the joint spin state of two
electrons in a DQD, with one electron localized in each of the two dots, the left (L)
and the right (R) one [212, 58, 159, 151]. The logical states of the qubit are the singlet
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|S⟩ = 1√
2
(|↑L↓R⟩ − |↓L↑R⟩) and the spin unpolarized triplet |T0⟩ = 1√

2
(|↑L↓R⟩+

|↓L↑R⟩). The remaining two states, spin polarized triplets, |↑L↑R⟩ and |↓L↓R⟩, are
split off by the constant magnetic field applied in the plane of the structure. In this
chapter, I adopt the convention that the Bloch sphere of S-T0 qubit is defined in
such a way that state |S⟩ (|T0⟩) coincides with north (south) pole of the sphere and
the axis connecting these two points is the z axis.

It was demonstrated in Ref. [58] that it is possible to reliably initialize the two
electron spins in singlet state |S⟩, perform rotations around z axis of the Bloch
sphere, as well as a read out in a form of projective measurements onto |S⟩. All
these operations can be realized utilizing the fast control of the exchange interaction
that is achieved by applying proper voltage pulses to the metallic gates on the surface
of the device. The states |S⟩ and |T0⟩ are naturally split by energy J due to the
exchange interaction between electrons in the DQD [78, 195]. This energy difference
can be influenced by controlling either the energy difference between the ground
single-electron states of the two dots (the so-called detuning ϵ) [58, 220], or the
height of the interdot barrier [73, 84]. According to Ref. [66], the value of J can be
varied from much less than 1 µeV to a few µeV on a time scale of a nanosecond.
We have then the following time-dependent and externally controlled term in the
Hamiltonian of the qubit (in units of ℏ):

ĤJ(t) = J(t)
σ̂z
2
. (4.1)

Rotations about the x axis of the Bloch sphere (or equivalently, the rotations
between |S⟩ and |T0⟩ states) present a greater challenge. In Ref. [159] it was re-
alized with the help of an interdot gradient of electron spin splitting ∆Bz caused
by difference of nuclear polarizations in the two dots. If the local fields (either nu-
clear Overhauser fields, or magnetic fields from external magnets) in both dots were
identical, |S⟩ and |T0⟩, states would not experience any dynamics, since the phase
acquired by spin-down state |↓L⟩ (spin-up state |↑L⟩) of the electron in the L dot
would be cancelled by the spin-up state |↑R⟩ (spin down state |↓R⟩) of the electron
in the R dot. The field gradient breaks this symmetry, which can be seen in the
following example, where we allow |S⟩ to evolve for time t

|S⟩ = 1√
2
(|↑L↓R⟩ − |↓L↑R⟩)

t−→ 1√
2

(
|↑L↓R⟩ − eit∆Bz |↓L↑R⟩

)
. (4.2)

We can see that the initial state transforms back-and-forth between singlet and the
unpolarized triplet, as the phase factor oscillates between 1 and −1 with frequency
set by ∆Bz. The field gradient ∆Bz contributes the following term to the qubit’s
Hamiltonian:

Ĥ∆Bz = ∆Bz
σ̂x
2
, (4.3)

where σ̂x = |S⟩ ⟨T0|+ |T0⟩ ⟨S|.
The difficulty in the realization of precise singlet-to-triplet transitions lies in the

fact that the necessary field gradient, in most cases, is generated by the slowly fluc-
tuating Overhauser field established by the nuclear spins of the atoms comprising
the sample [113]. Therefore, ∆Bz must be treated as given (in fact, it must be
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measured beforehand, and value of ∆Bz varies in different repetitions of the experi-
ment), hence, it would induce an ongoing transition between |S⟩ and |T0⟩, which is
undesirable in the context of the entangling procedure. Instead, such a procedure
requires precise state transformations on demand. For example, if one desires to
execute a rotations from |S⟩ to |T0⟩ at a given moment t′ it would be ideal if ∆Bz

could be turned on only for a interval [t′, t′ + π/∆Bz], so that phase in Eq. (4.2) is
ei∆Bz ·(t′+ π

∆Bz
−t′) = eiπ = −1. Since there is no practical way to change the value of

∆Bz during a single realization of the procedure, one cannot simply turn off the gra-
dient and stop the transition. Nevertheless, the transition can be effectively blocked
by overshadowing ∆Bz with strong enough splitting J , which can be controlled
with relative ease, and it can be switched on and off at will. In order to realize
the idealized scenario such as the one described above, the time scale on which J is
manipulated must be the shortest time scale in the problem. In particular, this time
scale must be much shorter than the period of rotations around x axis 1/∆Bz as
well as the period of z rotations set by the maximal value of singlet-triplet splitting
1/Jmax. Note that pulse-shaping techniques for gate error mitigation were derived
for S-T0 qubits [221, 222, 223], but their implementation has proven to be challeng-
ing so far, and I focus here on the simplest control scheme used in experiment on
creation of entanglement in Ref. [66]. Let us also note that entanglement of two
S-T0 qubits in the situation in which ∆Bz is always larger than J was generated
using a scheme involving ac control of J [224], which is distinct from the one used
in Ref. [66] and analyzed here.

4.2.2 Decoherence of a single S-T0 qubit

4.2.2.1 The nature of noisy terms in the Hamiltonian

A qubit evolving with nominally constant ∆Bz and J is undergoing decoherence due
to uncontrolled fluctuations of these parameters. When the magnetic field gradient
∆Bz is due to the difference of the z components of nuclear Overhauser fields in the
two dots (which is the case on which I focus here), the main mechanism responsible
for its fluctuations is the spin diffusion process [113, 225] caused by dipolar interac-
tions between the nuclear spins. Note that I focus here on J≫ ∆Bz regime, in which
only the large-amplitude classical fluctuations of the Overhauser fields can affect the
qubit. This is in contrast to J≪∆Bz case, in which a quantum treatment of nuclear
fluctuations is necessary [110, 185, 226]. The large-amplitude fluctuations have a
characteristic decorrelation time scale of about one second [113, 225], which is much
longer than the time scale of a single run of the experiment, i.e. a single repetition
of qubit’s initialization – evolution – measurement cycle. Therefore, ∆Bz(t) can be
treated as quasistatic [132, 108, 177], i.e. it is considered as a constant (i.e. time
independent) random variable with certain probability distribution p(∆Bz). For
a large number of nuclei, this distribution is normal [127], with the average value

∆Bz and the dispersion (standard deviation) σ∆Bz =
√

∆B2
z − (∆Bz)2. Within this

approximation, the result of the experiments are interpreted as follows. Given the
initial density operator of the qubit, ρ̂(0) = ρ̂ini, its evolution during the experiment
run number n, is described by the qubit Hamiltonian Ĥq(t) = ĤJ(t)+ Ĥ∆Bz with an
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unknown, but constant, value of ∆Bz = ∆Bn
z drawn from the distribution p(∆Bz),

ρ̂(t|∆Bn
z ) = e−it(Jσ̂z+∆Bz σ̂x)/2ρ̂inie

it(Jσ̂z+∆Bz σ̂x)/2
∣∣∣
∆Bz=∆Bn

z

. (4.4)

The final results are derived from the whole series of N experiment repetitions with
the same initial state. Therefore, the expectation values of the measured quantities
are calculated with the help of the averaged density operator according to

ρ̂fin(t) =
1

N

N∑
n=1

ρ̂(t|∆Bn
z )

N→∞−−−→
∞∫

−∞

d(∆Bz)p(∆Bz)ρ̂(t|∆Bz) = ρ̂(t|∆Bz) . (4.5)

On the other hand, the exchange splitting J(t) changes due to fluctuations of
local electric fields, i.e. due to charge noise, which is ubiquitous in semiconductor
nanostructures. The charge noise typically has its spectral weight concentrated at
low frequencies. Contributions of noise at frequencies corresponding to the inverse
of typical qubit coherence time are typically negligible when considering free evo-
lution of the qubit (hence the noise can be treated then as quasistatic), but they
have to be taken into account when modeling the spin echo experiment [151], in
which the influence of the lowest-frequency noise is removed, and coherence times
are longer. In order to model the experimental data, one has to average the qubit’s
evolution over many realizations of the stochastic process J(t). If the noise statistics
is assumed to be Gaussian (which is natural for the noise consisting of many inde-
pendent contributions), and if the evolution can be treated in the pure dephasing
approximation (i.e. neglecting ∆Bzσ̂x term when ∆Bz≪J(t)), the averaging can be
done analytically. In the case of non-Gaussian noise and when keeping the general
form of the Hamiltonian, one has to resort to numerical simulations [227, 228].

It was shown [151] that the GaAs/AlGaAs S-T0 qubit is affected by noise having
power spectral density of 1/fβ form with β≈0.7 in the range of frequencies relevant
for correct description of spin echo signal. It is unclear if this value of β is specific
to this material or only to the device used in that experiment.

4.2.2.2 Decoherence during free evolution of the qubit

I now assume that the initial state of a qubit is |−y⟩ = 1√
2
(|S⟩ − i|T0⟩). This choice

is connected with the entangling procedure used in Ref. [66], in which this single-
qubit state is used as the initial one for both qubits. In a free induction decay (FID)
experiment, the qubit undergoes evolution without any manipulations between its
initialization and the coherence readout at time τ . With fixed values of J and ∆Bz,
the expectation values of qubit observables ⟨σ̂FID

i (τ)⟩ = ⟨−y|σ̂i(τ)|−y⟩ are given by

⟨σ̂FID
x (τ)⟩ = J√

∆B2
z + J2

sin
(√

∆B2
z + J2τ

)
, (4.6)

⟨σ̂FID
y (τ)⟩ = − cos

(√
∆B2

z + J2τ
)
, (4.7)

⟨σ̂FID
z (τ)⟩ = − ∆Bz√

∆B2
z + J2

sin
(√

∆B2
z + J2τ

)
. (4.8)
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The qubit evolves under the influence of J≫∆Bz, so to the lowest order in ∆Bz/J
the initial amplitude of x and y signals is ≈ 1, while the z signal has amplitude
≈ ∆Bz/J . In the presence of fluctuations of both J and ∆Bz all these signals
will average to zero at long times, at which the arguments of the oscillatory func-
tions taken from an appropriate distribution will have relative phases randomly
distributed between 0 and 2π.

One can average the above expressions over ∆Bz and J assuming Gaussian
and quasistatic fluctuations of either of these parameters. I focus on the largest
observable, ⟨σ̂FID

y (τ)⟩, and I approximate
√

∆B2
z + J2τ ≈ Jτ +∆B2

zτ/2J , which is
valid for J ≫ ∆Bz and for short durations τ ≪ 8J3/∆B4

z . For J noise one gets
then a simple Gaussian decay:〈

⟨σ̂FID
y (τ)⟩

〉
J
≈ −1

2
exp

[
− (τ/T ∗

2,J)
2
]
cos(J̄τ) , (4.9)

where J̄ is the average value of J and the decay time scale is

T ∗
2,J =

√
2

σJ
, (4.10)

where σJ is the standard deviation of J .
Averaging over ∆Bz gives

〈
⟨σ̂FID

y (τ)⟩
〉
∆Bz

≈ − exp

(
−

τ 2∆Bz
2
σ2
∆Bz

2
(
J2 + (σ2

∆Bz
τ)2
))

× 1(
1 + (σ2

∆Bz
τ/J)2

)1/4 cos(r(τ) + s(τ)
)
, (4.11)

where r(τ) = 1
2
arctan

(
σ2
∆Bz

τ/J
)
, and s(τ) = Jτ

(
∆Bz

2
+2J2 +2(σ2

∆Bz
τ)2
)
/2
(
J2 +

(σ2
∆Bz

τ)2)
)
. The decay envelope is then a product of two factors. The first one

dominates the decay when ∆Bz ≫σ∆Bz , i.e. in the situation in which a finite ∆Bz

is used for coherent control of the qubit. Then at long τ this factor saturates at
exp

(
− ∆Bz

2
/2σ2

∆Bz

)
≪ 1, and the qubit loses most of its coherence at time scale

τ≪J/σ2
∆Bz

, at which the factor can be approximated as exp
(
−(τ/T ∗

2,∆Bz
)2
)
, where

T ∗
2,∆Bz

=

√
2

σ∆Bz

· J

∆Bz

. (4.12)

On the other hand, when ∆Bz≪σ∆Bz , the second factor dominates, and the signal
envelope decays in power law fashion ∝

√
τ∆Bz/τ , where the characteristic time

τ∆Bz =J/σ
2
∆Bz

.
It is important to note now that in the regime of J̄≫∆Bz and ∆Bz≫σ∆Bz (that

is relevant for experiments of interest in this chapter), one typically has σJ ≫σ∆Bz .
This is due to the observed relation between J and detuning ϵ: J ≈ J0 exp(ϵ/ϵ0),
and the fact that the noise in J comes mostly from fluctuations of ϵ. One has thus
δJ/J ∼ δϵ/ϵ0, so for constant level of detuning noise the standard deviation σJ
increases with J [151]. It is then a reasonable assumption to neglect the effect of
fluctuations of ∆Bz in the calculation of decoherence. Furthermore, for J̄ ≫∆Bz

the main effect of ∆Bzσ̂x term is a slight tilt in xOz plane of the axis about which
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the qubit’s Bloch vector is precessing. Neglecting this effect, one arrives at the pure
dephasing approximation to the qubit’s Hamiltonian:

Ĥ(t) ≈
(
J̄ + δJ(t)

) σ̂z
2
, (4.13)

where I have now included the time dependence of J noise. The off-diagonal element
of the qubit’s density operator is given by

ρST0(τ) = ρST0(0) e
−iJ̄τ

〈
exp

−i
∞∫
0

fFID(t; τ)δJ(t)dt

〉
δJ

, (4.14)

where ⟨...⟩δJ denotes averaging over different realizations of δJ(t) noise, and fFID(t; τ)=
θ(t)θ(τ − t) is the FID time-domain filter function, where θ(t) is Heaviside step
function. The transverse components of the qubit state are given by

〈
⟨σ̂FID

x (τ)⟩
〉
=

2ReρST0(τ) and
〈
⟨σ̂FID

y (τ)⟩
〉
= 2ImρST0(τ). For Gaussian δJ(t) noise only the se-

cond cumulant of the random phase is nonzero [229, 230, 149], and one has a closed
formula for coherence:

ρST0(τ) = ρST0(0) e
−iJ̄τ e−χFID(τ) , (4.15)

in which the attenuation factor χFID is defined in the following way

χFID =

∞∫
0

dt1

∞∫
0

dt2fFID(t1)fFID(t2) ⟨δJ(t1)δJ(t2)⟩δJ

=

∞∫
0

S(ω)|f̃FID(ω)|2
dω

π
, (4.16)

where in the second line it has been assumed that the noise is stationary, so that its
autocorrelation function is C(t1− t2)=⟨δJ(t1)δJ(t2)⟩δJ . The spectral density of the
noise is S(ω)=

∫∞
−∞C(t)eiωtdt and the frequency domain filter function [229, 230] is

f̃FID(ω) =

∞∫
−∞

fFID(t; τ)e
iωtdt = 2 sin2

(ωτ
2

) 1

ω2
. (4.17)

In the case of S(ω)∼ 1
fβ with β = 0.7, the attenuation factor defined in Eq. (4.16)

depends on τ as a power function: χFID ∝ τ 1.7 (see Appendix (p. 123) for a detailed
calculation).

Note that for β≥1 the integral in Eq. (4.16) diverges. However, in a real expe-
rimental setting, the total time of data acquisition, TM , involving many repetitions
of cycles of qubit initialization, evolution for time τ , and measurement, sets the
low-frequency cutoff, ωmin ∼ 1/TM , for frequencies of the noise that actually affect
the qubit [149, 151, 205]. Consequently, the lower limit of the integral in Eq. (4.16)
should be ωmin > 0 instead of zero, making the attenuation factor finite. In this
study I have set ωmin/2π=1 mHz, corresponding to TM in a perfectly realistic range
of tens of minutes.
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Figure 4.1: FID and SE signals of a single S-T0 qubit for the case of 1/fβ noise in
exchange splitting J , with fluctuations in ∆Bz neglected. The power of the noise
was chosen to be such that ensures decay of SE signal as observed in the experiment
[151] (such a noise power that leads to half-decay of SE signal in 1.5 µs for J ≈ 1
µeV). Note that the improvement in coherence time due to echo relative to FID is
larger when β is larger, i.e. when there is more noise power at the lowest frequencies.

4.2.2.3 Decoherence in spin echo protocol

The influence of very low frequency noise on qubit dephasing can be removed by
employing a spin echo protocol [229], in which a qubit is subjected to a π rotation
about an axis perpendicular to the axis along which the noise is coupled (here I
focus on π rotations about the x axis) at time t = τ

2
, and the coherence is read out

at the final time t = τ .
Within the pure dephasing approximation introduced above, and for perfect short

(δ function like) pulses, the calculation of echoed coherence signal as a function
of duration τ of the echo procedure amounts to replacing the fFID(t) function in
Eq. (4.14) by a fSE(t) function which is nonzero for t ∈ [0, τ ] and changes its value
from 1 to −1 at t = τ/2, see e.g. Ref. [229, 149]. The coherence at the final readout
time is given by a formula analogous to Eq. (4.15), only with χFID(τ) replaced by
χSE(τ) in which f̃SE(ω) = 4 sin4 ωτ

4
/ω2 appears. The latter filter function strongly

suppressed very low ω contribution (precisely from ω≪4τ range) to the attenuation
factor χSE(τ). For quasistatic charge noise one has S(ω) ≈ σJδ(ω), and the echo
protocol leads to a complete recovery of the initial coherence.

For J noise with nontrivial spectrum, but with a lot of noise power at low
frequencies, the echo decay time is expected to be much longer than the FID decay
time, see Fig. 4.1 for illustration. Recall that our justification for neglection of
quasistatic ∆Bz fluctuations was the fact that in experimentally relevant parameter
regime they lead to much slower FID decay than the J fluctuations. Echo-induced
suppression of J noise effects could be suspected of leading to breakdown of that
assumption. This is not the case: the echo protocol is also strongly suppressing
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the effects of quasistatic transverse noise, provided that the effective transverse field
∆Bz is much smaller that the typical longitudinal field. For given values of J and
∆Bz one has

⟨σ̂SE
y (τ)⟩ = ⟨−y|eiĤ

τ
2 (iσ̂x)e

iĤ τ
2 σ̂ye

−iĤ τ
2 (−iσ̂x)e−iĤ τ

2 |−y⟩

=
1

∆B2
z + J2

(
J2 +∆B2

z cos
(√

∆B2
z + J2τ

))
. (4.18)

As before, this expression can be analytically averaged over ∆Bz for short durations
τ ≪ 8J3/∆B4

z . The full result is more complicated than Eq. (4.11) (see Appendix
(p. 122) for the full expression), but for σ2

∆Bz
τ/J≫(∆Bz/σ∆Bz)

2 one can arrive at

〈
⟨σ̂SE

y (τ)⟩
〉
∆Bz

≈ J2

J2 +∆Bz
2 +

σ2
∆Bz

2
(
J2 +∆Bz

2
) ( J

σ2
∆Bz

τ

)3/2

cos
(
J̄τ
)
, (4.19)

where we see that at long times the only effect of quasistatic transverse noise is
decrease of the coherence signal by factor ≈ (∆Bz/J̄)

2≪1 of its initial value.
The echo signal averaged over quasistatic fluctuations of J looks similarly

⟨⟨σSE
y (τ)⟩⟩J ≈ J̄2 + σ2

J

J̄2 +∆B2
z

+
∆B2

z

J̄2 +∆B2
z

exp

(
−σ

2
Jτ

2

2

)
cos
(
J̄τ
)
. (4.20)

For long times signal ⟨⟨σSE
y (τ)⟩⟩J remains close to its initial value (J̄2 + σ2

J)/(J̄
2 +∆B2

z ) ≈
1.

4.3 The Procedure for Entangling Two S-T0 Qubits
Now I proceed with the description of the procedure designed in Ref. [66] aimed to
create maximally entangled two-qubit states out of an initial product state. Here,
let us focus on an idealized setting in which both J and ∆Bz are piecewise-constant
and fully controlled, so no averaging over their values is performed. Of course, in
reality only J is controlled, and it furthermore fluctuates – and the consequences of
this will be the main subject of subsequent sections.

Entanglement generation requires some kind of qubit-qubit interaction, and in
the case of S-T0 qubits one utilizes the coupling between electric dipoles induced
by state-dependent charge distributions in each DQD [212]. Only if both qubits are
in state |S⟩, and their exchange splittings are finite, the charge distributions are
asymmetric (due to mixing of the singlet state relevant here with a singlet state of
two electrons localized in a single dot), and hence, each DQD possesses a nonzero
electric dipole moment. Therefore, the effective Hamiltonian of this interaction is
given by (in units of ℏ)

Ĥint =
1

4
J12 |SS⟩ ⟨SS| =

1

4
J12(σ̂z + 1̂)⊗ (σ̂z + 1̂) . (4.21)

It was established empirically in Ref. [66] that for values of splittings Ji used there
the strength of the interaction is given by

J12 =
J1J2
K

, (4.22)
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where parameter K is a constant. Thus, the control over the exchange splittings
(described in the previous section) simultaneously allows to modify the value of
the coupling J12. Note that the fact that J12 ∝ J1J2 exposes single-qubit gates to
crosstalk when nearby S-T0 qubits have finite Ji splittings, and methods for dealing
with this issue have been discussed [231]. Furthermore, configuration interaction
calculations have suggested the existence of parameter regions for two capacitively
coupled S-T0 qubits in which the relation between J12 and Ji is more complicated,
leading e.g. to predictions of “sweet spots” at which charge-noise induced fluctuations
of Ji and/or J12 are suppressed [232, 233]. Here, I focus on noisy behavior of
Ji measured in Ref. [151] and the resulting noisy behavior of J12 following from
Eq. (4.22).

The procedure consists of the following steps. Before each run the value of the
gradients of magnetic field ∆Bz,i in each DQD is established (e.g. by a measurement
or even setting the value with a dedicated procedure). Then each S-T0 qubit is
independently initialized in |S⟩ state, yielding a separable two-qubit state

|ψ(t = 0)⟩ = |S⟩ ⊗ |S⟩ =: |SS⟩ . (4.23)

For each qubit, the exchange splitting is turned off for a time interval corresponding
to π

2
rotation around x axis due to magnetic gradients. Generally ∆Bz,1 ̸= ∆Bz,2

(for concreteness, suppose that ∆Bz,1 ⩾ ∆Bz,2) so that each splitting has to be kept
turned off for different time interval ti = π

2∆Bz,i
. After time t1 one obtains

|ψ(t1)⟩ =e−
i
2

π
2
σ̂x ⊗ e−

i
2
∆Bz,2t1σ̂x |SS⟩

=
1√
2

(
|S⟩ − i |T0⟩

)
⊗ e

i
2

π
2

∆Bz,2
∆Bz,1

σ̂x |S⟩ . (4.24)

Then, the splitting J1 is raised to suppress the rotation of qubit 1 about x axis,
while the rotation of qubit 2 is being completed in time δt = t2 − t1:

|ψ(t1 + δt = t2)⟩ = e−
i
2
J1δtσ̂z ⊗ e−

i
2
∆Bz,2δtσ̂x |ψ(t1)⟩

=
1√
2

(
e−i

J1δt
4 |S⟩ − ie+i

J1δt
4 |T0⟩

)
⊗ 1√

2

(
|S⟩ − i |T0⟩

)
. (4.25)

In order to remove the phases imprinted on qubits due to finite ∆Bz,i, the spin echo
sequences are carried out on each qubit. (Of course, in the more realistic setting in
which J fluctuates, the need to remove the influence of slowest of these fluctuations
on the final two-qubit state is a much stronger motivation to employ spin echo.) The
SE sequence consists of three steps: the evolution with splitting Ji over a chosen
time interval, π rotation of a state about x axis (i.e. 2ti interval when the splitting
Ji is turned off), which is followed by the evolution for the same time interval. In
this case, the durations of SE on each qubit are chosen so that both sequences
terminate at the same instant τ . Since t1 ̸= t2 this requirement implies that each SE
starts at different time, and they last for unequal durations. Simultaneously during
the evolution intervals excluding the periods of evolution corresponding to the π
rotations both splittings are on, and hence the two-qubit coupling Ĥint is on as well,
thus allowing for qubits to entangle. Figure 4.2 showcases the time dependence of
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Figure 4.2: The temporal control of the exchange splittings J1(t), J2(t) during execu-
tion of the entangling procedure when the magnetic field gradients ∆Bz,1 ̸= ∆Bz,2.
Thin vertical blue dashed and red dash-dotted lines are positioned at the middle of
the durations of π pulses for qubit 1 and 2, respectively.

splittings J1 and J2 for the entirety of the entangling procedure. At the end of the
procedure, the following state is produced:

|τ⟩ ≡ |ψ(τ)⟩ = 1

2
e−

1
2
iJ12(τ−3t2) |SS⟩

+
i

2
|ST0⟩+

i

2
|T0S⟩

− 1

2
e−

1
2
iJ12(τ−3t2) |T0T0⟩ . (4.26)

Recall that t2 > t1 because it was assumed that ∆Bz,1 ⩾ ∆Bz,2 without loss of
generality (if ∆Bz,2 > ∆Bz,1 simply relabel the qubits to obtain the same result).
Note that in the currently considered case of fixed J and ∆Bz the latter drops out
from the final state |τ⟩.

It should be noted that for the discrete set of durations τ = τ
(a)
ent = (2a− 1) π

J12
+

3t2, where a is a natural number, the state |τ⟩ is maximally entangled, specifically,
for odd or even a the entangling procedure generates the state

|ψo⟩ =
i

2
(−|SS⟩+ |ST0⟩+ |T0S⟩+ |T0T0⟩) (4.27)

or
|ψe⟩ =

i

2
(|SS⟩+ |ST0⟩+ |T0S⟩ − |T0T0⟩) , (4.28)

respectively. One can easily notice that the entangling procedure realizes a CPHASE
gate: −e−iJ12

τ−3t2
2 |SS⟩⟨T0T0| − |ST0⟩⟨T0S| − |T0S⟩⟨ST0| − e−iJ12

τ−3t2
2 |T0T0⟩⟨SS|.

4.4 The Quantification of Two-Qubit Entanglement
The next step is to quantify the level of entanglement possessed by the two-qubit
state |τ⟩ produced at the end of the entangling procedure. For two-qubit states de-
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scribed by the density operator ρ̂ the most commonly used measure of entanglement
is the concurrence [21].

For the family of output states ρ̂(τ) = |τ⟩ ⟨τ | the concurrence is given by

C (ρ̂(τ)) =

∣∣∣∣sin [12J12(τ − 3t2)

]∣∣∣∣ . (4.29)

One can make use of an alternative strategy to check to what degree the re-
sulting state is entangled: high level (greater than 1/2) of fidelity calculated bet-
ween the actual state |τ⟩ and the expected entangled state |ψo⟩ or |ψe⟩, defined
as F (|τ⟩, |ψo⟩) = |⟨τ |ψo⟩|2, confirms the entanglement [66]. In general, for mixed
states, fidelity is defined as F (ρ̂(τ), ρ̂o) = Tr{ρ̂(τ)ρ̂o}. If one of the states is pure,
as we will be having below, fidelity is given by F (ρ̂(τ), |ψo⟩) = ⟨ψo|ρ̂(τ)|ψo⟩.

In Fig. 4.3 I show the results of numerical calculation of concurrence of the final
two-qubit state as a function of the procedure duration τ in a model less idealized
than in the previous section. While I am still assuming that Ji and ∆Bz,i do not
experience any fluctuations, I now keep ∆Bz,i fixed during the evolution (as it is the
case in experiment), so that the evolution with finite Ji does not amount to phase
evolution in the computational basis of S/T0 states of two qubits, thus numerical
evaluation of the entanglement measure is necessary.

Although the impact of always-on ∆Bz,i terms amounts to a small drop of level
of entanglement of the resulting state compared to that from the idealized scenario
described in the previous section (see Fig. 4.3), it reveals also another delicate effect:
level of entanglement of the resulting state |τ⟩ starts to oscillate with frequency of
precession of single qubit states ωi =

√
∆B2

z,i + J2
i due to the fact that in such

conditions the qubits’ states rotate around the axis which does not coincide with z
axis exactly, but is tilted in xz plane because of presence ∆Bz. Characteristically, the
oscillations of entanglement of the state ρ̂(τ) gradually increase their amplitude with
increasing durations for 0 < τ ≲ 2 π

J12
and reach their maximum amplitude at τ ≈

2 π
J12

. Then the amplitude of oscillations decreases for 2 π
J12

≲ τ ≲ 4 π
J12

. The observed
pattern of the fast oscillations of two-qubit entanglement is periodic in the duration τ
of the entangling procedure, with a period of about 4 π

J12
. Such a pattern of oscillation

amplitude τ -dependence is a consequence of the entangling procedure design: at τ =
2 π
J12

the ideal resulting state |τ⟩ = −1
2
(|S⟩ − i|T0⟩)⊗2 is unentangled due to a very

specific combination of phases generated before and after the π rotations of qubits’
states. The two-qubit state that is produced in the middle of the idealized realization
of the entangling procedure (just before the step of π rotations) is fully entangled.
However, when the axes around which qubit states precess are tilted from z direction,
the initial superposition states do not rotate in the equatorial plane (as intended)
but in a slightly tilted plane. After the π rotation around x axes those states land on
the plane which is tilted off of the z axis in the opposite direction, and subsequently
the phases which qubits’ states acquire during the second half of the procedure
are no longer in a perfect correspondence to the previously obtained phases and
now they do not counterbalance each other, so the final two-qubit state manifests
unexpected entanglement. One can also notice that in the presence of constant
∆Bz,i the period of slow entanglement oscillations is slightly longer compared to
the idealized case (see Fig. 4.3). This fact cannot be illustrated with the help of
Bloch sphere as it originates from a two-qubit interaction, but it is evident from the
numerical diagonalization of the full two-qubit Hamiltonian: when ∆Bz,i are present,
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Figure 4.3: Top panel: Concurrence of the two-qubit state generated in the idealized
realization of the entangling procedure described in Sec. 4.3 (∆Bz,i are on during the
qubit rotations only, the rotations assumed to be perfect) plotted as red dashed line,
and the same for a more realistic procedure considered in Sec. 4.4 (∆Bz,i are always
on, albeit none of the parameters of the Hamiltonian are fluctuating) plotted as a
solid blue line. The parameters are close to those from experiment [66]: J1=J2=1.2
µeV (with corresponding frequency Ji/h=300 MHz), J12=1.29 · 10−2 µeV, ∆Bz,1=
∆Bz,2= 0.12 µeV. Bottom panel: zoomed in region of the top panel in the vicinity of
τ ≈ 2 π

J12
, red dotted line is the concurrence obtained in the idealized case, blue solid

line is the concurrence obtained in a more realistic case with constant parameters
Ji, J12, ∆Bz,i, and blue green dash-dotted line is the concurrence obtained in the
idealized case, but with value of J12 from the latter case.

the rate of acquisition of the desired two-qubit phase is slower than that of the ideal
case (CPHASE gate is rotated from the basis of {|SS⟩, |ST0⟩, |T0S⟩, |T0T0⟩} to the
basis of eigenvectors of the full Hamiltonian, and as a result the rate of two-qubit
phase acquisition becomes lower).
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4.5 Entangling Procedure in the Presence of Deco-
herence

In the experiment [66] it turned out that the two-qubit states obtained as outcome
of the procedure were indeed entangled, but only for short durations τ of the proce-
dure. Furthermore, the maximal level of entanglement of the generated states was
decreased compared to that of the expected ones. I consider below possible factors
that preclude from obtaining the maximally entangled two-qubit states.

4.5.1 Influence of fluctuations of magnetic field gradients on
efficiency of the entangling procedure

The magnetic field gradients between the QDs, which are the sources of finite ∆Bz,i

(with i = 1, 2), are often produced by the polarized in an appropriate way nuclear
spins of the atoms from which the sample is built [159, 66]. The spin bath is
dynamically polarized before each iteration of the experiment of entangling of qubits.
Due to the slowness of the intrinsic dynamics of the nuclear spin bath one does not
expect any fluctuation on the time scale of a single run of the experiment (∼ 1 µs).
However, possible variations of the values of ∆Bz,i from one run of the experiment
to another is the factor which can preclude from obtaining the maximally entangled
states. This effect is mainly caused by imprecise rotations of qubits’ states around
x axis, which are performed just after the initializations of the qubits in |SS⟩ state
(π
2

rotations) and in the middle of the entangling procedure (π rotations). Such
systematical errors lead to forming unequal superposition states of |S⟩ and |T0⟩.
The influence of quasistatic fluctuations of ∆Bz,i on the efficiency of the entangling
procedure results in a decrease of the overall efficiency independently of τ , i.e. the
fluctuating quasistatically ∆Bz,i influences in a similar way the outcomes for all
duration τ of the entangling procedure.

This effect can be easily seen when one considers the idealized realization of the
procedure: for simplicity, let us assume that only the first rotation was not exactly π

2

around x axis (errors of rotations R̂x(
π
2
) and R̂x(π) will accumulate – there is no pos-

sibility that the next rotation cancels the error of the previous one). In such a case,
the procedure will produce the state |τ(θ1, θ2)⟩ = |SS⟩(−i) sin θ1

2
sin θ2

2
exp(−i τ

2
J12)+

|ST0⟩(−i) sin θ1
2
cos θ2

2
+ |T0S⟩(−i) cos θ1

2
sin θ2

2
+ |T0T0⟩ cos θ1

2
cos θ2

2
exp(−i τ

2
), where

θi is the actual angle of rotation of the state of ith qubit around x axis. This state
|τ(θ1, θ2)⟩ is maximally entangled when superpositions of |S⟩ and |T0⟩, created in
each qubit from the separable two-qubit state |SS⟩ after R̂x(

π
2
) rotation, are equal

(i.e. all components have the same amplitudes): at τ = π/J12 the state |τ(θ1, θ2)⟩
should become |ψo⟩, which is maximally entangled, so one can estimate entangle-
ment of |τ(θ1, θ2)⟩ by calculating fidelity F (|τ(θ1, θ2)⟩, |ψo⟩) = |⟨τ(θ1, θ2)|ψo⟩|2 =
1
4
| sin θ1

2
sin θ2

2
+ sin θ1

2
cos θ2

2
+ cos θ1

2
sin θ2

2
+ cos θ1

2
cos θ2

2
|2, which has its maximum

F = 1 when θ1 = θ2 =
π
2
. Any deviation of θ1, θ2 ∈ [0, π] will reduce the degree of en-

tanglement of the state |τ(θ1, θ2)⟩. On the other hand, having a pure state |τ(θ1, θ2)⟩
it is possible to calculate analytically its concurrence C(|τ(θ1, θ2)⟩) = |⟨τ(θ1, θ2)|σ̂y⊗
σ̂y|τ ∗(θ1, θ2)⟩| = 4 sin θ1

2
cos θ1

2
sin θ2

2
cos θ2

2
sin( τ

2
J12), which, when τ = π/J12, varies

from C = 1 for θ1 = θ2 = π
2

to C = 0 when θ1, θ2 → 0 or π. Hence, the impact of
quasistatical fluctuations of magnetic field gradients ∆Bz,i amounts to a loss of the
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Figure 4.4: Concurrence of the two-qubit state |τ⟩ obtained in (a) idealized real-
ization of entangling procedure (the same as red dashed line in Fig. 4.3), (b) en-
tangling procedure with always-on constant ∆Bz,i (the same as blue solid line in
Fig. 4.3), (c) entangling procedure in which magnetic field gradients ∆Bz,i are cons-
tant during a single run of entangling procedure but fluctuate quasistatically from
one run to another (average over 10,000 realizations, ∆Bz,i ∼ N (∆Bz,i, σ∆Bz,i

),
σ∆Bz,i

= 15%∆Bz,i), here rotations around x axis artificially kept perfect (i.e. pre-
cisely π

2
at the beginning and π in the middle of the procedure), (d) the same as

(c) but with imprecise rotations around x axis which arise as a result of mismatch
of the rotation time and the actual value of ∆Bz,i. All results are obtained under
the assumption that S-T0 splittings Ji do not fluctuate and are switched on when
needed (as shown in Fig. 4.2). Values of parameters are the same as in Fig. 4.3.

maximal level of produced entanglement (see Fig. 4.4). This effect is independent
of the duration τ of the procedure and does not lead to a complete inability to yield
some entanglement when fluctuations of ∆Bz,i are moderate or small. Another im-
portant observation which comes from Fig. 4.4 is that the presence of quasistatically
fluctuating magnetic gradients ∆Bz,i during the entire entangling procedure, does
not degrade the efficiency of the procedure by a significant amount while rotations
of qubit states around x axis are accurate (cf. line c, which is very close to line b,
with line d in Fig. 4.4).

Consequently, in the rest of the chapter, where I will focus on influence of fluc-
tuations of Ji that will lead to complete decay of entanglement, I will neglect all
the above-discussed effects of quasistatic fluctuations of ∆Bz,i and rotation errors
caused by ∆Bz,i being finite, albeit small in comparison to Ji.

4.5.2 Influence of fluctuations of exchange splittings on effi-
ciency of the entangling procedure

4.5.2.1 Quasistatic fluctuations of exchange splittings

To begin with, I consider the influence of quasistatic fluctuations of exchange split-
tings Ji on the entanglement generation. The influence of quasistatically fluctuat-
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ing exchange splittings J1, J2 can be estimated by disregarding off-diagonal terms
of the Hamiltonian (but the qubit rotations involved in the entangling procedure
are assumed to be perfect) and performing the averaging of the density operator
Eq. (4.30) over the distributions of J1, J2. I assume that J1, J2 fluctuate according
to the normal distributions with mean values J̄1, J̄2 and standard deviations σJ1 ,
σJ2 , respectively.

The idealized entangling procedure generates states which are described by the
following density operator:

ρ̂(τ) = |ψ(τ)⟩⟨ψ(τ)|

=
1

4


1 −iϕ(τ) −iϕ(τ) −1

iϕ∗(τ) 1 1 −iϕ∗(τ)
iϕ∗(τ) 1 1 −iϕ∗(τ)
−1 iϕ(τ) iϕ(τ) 1

 , (4.30)

where ϕ(τ) = exp
(
−i τ

2
J12
)
. After averaging over quasistatic fluctuations of J1, J2

one obtains the density operator

⟨ρ̂(τ)⟩ = 1

4


1 −i⟨ϕ(τ)⟩ −i⟨ϕ(τ)⟩ −1

i⟨ϕ∗(τ)⟩ 1 1 −i⟨ϕ∗(τ)⟩
i⟨ϕ∗(τ)⟩ 1 1 −i⟨ϕ∗(τ)⟩

−1 i⟨ϕ(τ)⟩ i⟨ϕ(τ)⟩ 1

 , (4.31)

where

⟨ϕ(τ)⟩ = 2K√
4K2 + σ2

J1
σ2
J2
τ 2

exp

(
−i 4J̄1J̄2Kτ

8K2 + 2σ2
J1
σ2
J2
τ 2

)

× exp

(
−
(J̄2

1σ
2
J2
+ J̄2

2σ
2
J1
)τ 2

8K2 + 2σ2
J1
σ2
J2
τ 2

)
, (4.32)

where constant K = J̄1J̄2/J̄12, and J̄12 = π
τent

. In the experiment [66], the values
of parameters were as follows: J̄1 =1.16 µeV, J̄2 =1.32 µeV, J̄12 =1.29 · 10−2 µeV,
∆Bz,1 = ∆Bz,2 = 0.12 µeV (so t2 = 0 in the Eq. (4.29)). Note that I am using
J12 twice larger than the value reported in Ref. [66]. However, with this value one
obtains the period of oscillations of concurrence in agreement with experimental
data, i.e. the first maximum of entanglement occurs at τ=π/J12≈ 160 ns.

Entanglement of Eq. (4.31) as a function of duration τ is shown in the top panel
of Fig. 4.5 for Ji drawn from normal distribution with standard deviations σi =
15%J̄i. Due to quasistatic fluctuations of Ji the overall efficiency of the entangling
procedure decreases with increase of its duration τ . Although the direct impact of
the quasistatic fluctuations of J1, J2 on the resulting two-qubit state is completely
removed by utilizing simultaneous Hahn echo sequence on each qubit, the entangling
interaction between qubits, which is determined by two-qubit interaction energy
J12 ∝ J1J2, remains sensitive to the fluctuations, and this causes decay of the
entangling procedure efficiency with increasing duration τ .

4.5.2.2 Dynamical fluctuations of exchange splittings

In the experiment [66], the procedure of entangling two S-T0 qubits was based on the
SE procedure. While the SE perfectly cancels the impact of quasistatic single-qubit
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noises on the end state, in the case of dynamical fluctuations it helps to refocus the
state of the qubits only partially. Moreover, the two-qubit interaction part of the
evolution operator that describes the entangling procedure (which is responsible for
the entanglement generation) is not affected by the SE procedure, and consequently
it is susceptible to noisy electric fields (leading to noise in Ji and J12) in the same way
as in FID experiment. As a result, the overall efficiency of the entangling procedure
decays with increasing its duration τ .

In order to estimate analytically the influence of dynamical fluctuations of ex-
change splittings, I approximate the Hamiltonian of the system by its diagonal ne-
glecting the off-diagonal terms associated with magnetic field gradients ∆Bz,i, which
were an order of magnitude smaller than exchange splittings Ji in the experiment
[66]:

Ĥ2q ≈ Ĥdiag
2q =

1

2

(
J1(t)σz ⊗ 1+ J2(t)1⊗ σz

+
1

2
J12(t)(σz + 1)⊗ (σz + 1)

)
. (4.33)

Assuming perfect rotations of qubits’ states, averaged density operator elements
of the resulting two-qubit state after performing the entangling procedure are

⟨ρab,cd(τ)⟩ = ⟨⟨ab|ρ̂(τ)|cd⟩⟩
= ⟨⟨ab|ÛSE(τ)ρ̂

initialÛ †
SE(τ)|cd⟩⟩

= ⟨⟨ab|ÛFID

(τ
2
, τ
)(

(−iσx)⊗ (−iσx)
)
ÛFID

(
0,
τ

2

)
×
∑
kl,mn

ρinitialkl,mn|kl⟩⟨mn|

× Û †
FID

(
0,
τ

2

)(
(iσx)⊗ (iσx)

)
Û †
FID

(τ
2
, τ
)
|cd⟩⟩, (4.34)

where evolution operator ÛFID(t1, t2) = exp
(
−i
∫ t2
t1
Ĥ2q(t)dt

)
≈ exp

(
−i
∫ t2
t1
Ĥdiag

2q (t)dt
)
.

Analyzing the two-qubit system, I consider two distinct possibilities of dynamical
fluctuations: splitting energies J1, J2 could fluctuate independently, i.e. Ji(t) =
J̄i + δJi(t), or their fluctuations may have a common source Ji(t) = J̄i + siδJ(t),
where si ∈ [0, 1] is a coupling of ith qubit to the noise. Note that correlations
of low-frequency charge noises affecting two quantum dots separated by ∼ 100 nm
distance have been observed in experiments [234, 235]. Correspondingly, the two-
qubit coupling in the former case reads

J12(t) =
J1(t)J2(t)

K
=

1

K

[
J̄1 + δJ1(t)

] [
J̄2 + δJ2(t)

]
≈ 1

K

[
J̄1J̄2 + J̄2δJ1(t) + J̄1δJ2(t)

]
, (4.35)

and in the latter case

J12(t) =
J1(t)J2(t)

K
=

1

K

[
J̄1 + s1δJ(t)

] [
J̄2 + s2δJ(t)

]
≈ 1

K

[
J̄1J̄2 +

(
s1J̄1 + s2J̄2

)
δJ(t)

]
. (4.36)
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Note that I neglect here the quadratic in noises small terms ∝ δJ1(t)δJ2(t) and
∝ (δJ(t))2.

For the case of independent (completely uncorrelated) charge noises that affect
J1(t) and J2(t), the average density operator elements of the generated state are

⟨ρab,cd(τ)⟩ = ⟨⟨ab|ρ̂(τ)|cd⟩⟩

= ρinitial−a−b,−c−de
−i

J̄1J̄2
4K

(ab−cd)τ

×
〈
exp

[
− i

2

( J̄2
2K

(ab− cd)

∫ τ

0

dt δJ1(t)fFID(t)

+
(
c− a+

J̄2
2K

(c+ d− a− b)
) ∫ τ

0

dt δJ1(t)fSE(t)
)]〉

×
〈
exp

[
− i

2

( J̄1
2K

(ab− cd)

∫ τ

0

dt δJ2(t)fFID(t)

+
(
d− b+

J̄1
2K

(c+ d− a− b)
) ∫ τ

0

dt δJ2(t)fSE(t)
)]〉

(4.37)

= ρinitial−a−b,−c−de
−i

J̄1J̄2
4K

(ab−cd)τ

× exp
[
− 1

2

{( J̄2
4K

(ab− cd)
)2
χFID,J1(τ)

+
(1
2

(
c− a+

J̄2
2K

(c+ d− a− b)
))2

χSE,J1(τ)
}]

× exp
[
− 1

2

{( J̄1
4K

(ab− cd)
)2
χFID,J2(τ)

+
(1
2

(
d− b+

J̄1
2K

(c+ d− a− b)
))2

χSE,J2(τ)
}]
, (4.38)

where a, b, c, d ∈ {1,−1} (these parameters code the basis {|SS⟩, |ST0⟩, |T0S⟩, |T0T0⟩}
as {11, 1−1,−11,−1−1} in indices of density operator elements), and χFID,Ji(τ),
χSE,Ji(τ) are the attenuation factors that describe the influence of dynamical noise
of Ji(t) in the case of FID (with constant time domain filter function fFID(t)) or
SE (with time domain filter function with a single sign inversion fSE(t)). For noise
spectrum of the form S(ω)=A/ωβ they are given by

χFID(τ) =
4A

π

∫ ∞

0

dω

ω2+β
sin2 ωτ

2
, (4.39)

χSE(τ) =
16A

π

∫ ∞

0

dω

ω2+β
sin4 ωτ

4
, (4.40)

see Appendix (p. 123) for the details of derivation and simple analytical approxima-
tions in considered here cases of β=0.7 and 2.

Owing to the fact that the approximated Hamiltonian is diagonal, the density
operator undergoes the decoherence of pure dephasing type. There are two es-
sentially distinct types of the off-diagonal elements of two-qubit density operator.
The density operator elements with a single spin flip: ⟨ρ11,1−1(τ)⟩, ⟨ρ11,−11(τ)⟩,
⟨ρ1−1,−1−1(τ)⟩, ⟨ρ−11,−1−1(τ)⟩ and their Hermitian conjugated partners diminish
mainly due to decrease of single-qubits’ signals ∝ exp

(
−1

2
χSE(τ)

)
, whereas ele-

ments with two spin flips: ⟨ρ11,−1−1(τ)⟩, ⟨ρ1−1,−11(τ)⟩ and their Hermitian conju-
gated partners decay two times faster as both qubits make their contribution to the
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Figure 4.5: Concurrence of the two-qubit state ⟨ρ̂(τ)⟩ as a function of the duration
τ of the entanglement generation procedure. Lines are results for the case in which
fluctuations of Ji and J12 are taken into account, while results in which the fluctu-
ations of J12 were artificially turned off are shown with open symbols. Top panel:
The case of quasistatically fluctuating J1, J2 with standard deviations σi = 0.15J̄i
(Eq. (4.31)). Middle and bottom panels: The cases of dynamically fluctuating J1,
J2, and hence J12, due to 1/fβ noise that is uncorrelated (blue solid line) or perfectly
correlated (red dashed lines) for the two qubits. The power of the noise affecting
each qubit was chosen to be such that ensures the time scale of decay of single-
qubit SE signal like in the experiment [151]: S-T0 qubit having J=1.16 µeV shows
TSE ≈ 1.6 µs, S-T0 qubit having J=1.32 µeV shows TSE ≈ 1.4 µs.

decay ∝ exp (−χSE(τ)). Hence, the scale on which one can expect the generation of
entangled state is limited from above by the single-qubit SE decay time.

In the case of correlated noises, Ji(t) = J̄i+siδJ(t), the averaged density operator
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elements are of the following form:

⟨ρab,cd(τ)⟩ = ⟨⟨ab|ρ̂(τ)|cd⟩⟩

= ρinitial−a−b,−c−de
−i

J̄1J̄2
4K

(ab−cd)τ

×
〈
exp

[
− i

2

{s1J̄2 + s2J̄1
2K

(ab− cd)

×
∫ τ

0

dt δJ(t)fFID(t)

+
(
s1
(
c− a+

J̄2
2K

(c+ d− a− b)
)

+ s2
(
d− b+

J̄1
2K

(c+ d− a− b)
))

×
∫ τ

0

dt δJ(t)fSE(t)
}]〉

(4.41)

= ρinitial−a−b,−c−de
−i

J̄1J̄2
4K

(ab−cd)τ

× exp
[
− 1

2

{(s1J̄2 + s2J̄1
4K

(ab− cd)
)2
χFID(τ)

+

(
1

2

(
s1
(
c− a+

J̄2
2K

(c+ d− a− b)
)

+ s2
(
d− b+

J̄1
2K

(c+ d− a− b)
)))2

χSE(τ)
}]
. (4.42)

The key qualitative feature of Eqs. (4.38) and (4.42) is the presence of terms
proportional to χSE, in which the low-frequency noise is suppressed by the echo
procedure, and of terms proportional to χFID, related to fluctuations of interqubit
interactions, in which the low-frequency noise spectrum fully contributes to dephas-
ing.

In Fig. 4.5 the amount of entanglement is presented in the case of uncorrelated
noises for two exponents characterizing 1/fβ noise, β = 2.0 and 0.7 (middle and
bottom panels, respectively). As can be seen in the bottom panel of Fig. 4.5, for β<1
the decay of the overall efficiency of the entangling procedure is mainly caused by
influence of fluctuations of splittings of individual qubits (which also fully determines
the decay of the fidelity of single-qubit coherence). On the other hand, for β > 1,
(e.g. β = 2.0, the middle panel of Fig. 4.5), the decay of the overall entanglement
generation efficiency is mostly due to the infidelity of the entangling gate, which is
realized by dynamically fluctuating two-qubit term. This is due to the fact that for
noise that is very strongly concentrated at lowest frequencies, single-qubit noise is
very efficiently suppressed by the echo procedure, and the non-echoed fluctuations
of two-qubit interaction, which are the sources of terms ∝ χFID/K in the above
expressions for two-qubit coherences, are dominating the dephasing of the final state.
Thus, the effect of dynamical noise of Ji with high value of β on the final state
is qualitatively the same to that of quasistatic fluctuations of splittings Ji, where
single-qubit terms cancel out perfectly (thanks to applying Hahn echo on each qubit)
and the fidelity of two-qubit entangling gate, which is susceptible to fluctuations as
in FID experiment, is diminishing when the duration τ of the procedure becomes
longer.
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Figure 4.6: Pauli set for the case of 1/f 0.7 noise. Blue lines show calculated Pauli
set for two independent noises of J1(t), J2(t), whereas red lines show calculated
Pauli set for correlated noises J1(t) = J2(t). In the top panel, for the case of
independent noises the following measures are shown: blue solid line is concurrence
of ⟨ρ̂(τ)⟩, brown dashed line is fidelity ⟨ψo|⟨ρ̂(τ)⟩|ψo⟩ (see Eq. (4.27)), purple dash-
dotted line is fidelity ⟨ψe|⟨ρ̂(τ)⟩|ψe⟩ (see Eq. (4.28)), turquoise dotted line is fidelity
⟨ψ(τ)|⟨ρ̂(τ)⟩|ψ(τ)⟩ (see Eq. (4.26); and red dotted line is concurrence calculated for
correlated noises J1(t) = J2(t). The power of the noise affecting each qubit was
chosen to be such that ensures the time scale of decay of single-qubit SE signal like
in the experiment [151]: S-T0 qubit having J =1.16 µeV shows TSE ≈ 1.6 µs, S-T0
qubit having J=1.32 µeV shows TSE ≈ 1.4 µs. In the case of fully correlated noises
J1(t) = J2(t), the higher power of the noise has been chosen for both qubits.
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In Fig. 4.6 the two Pauli sets for two-qubit states created in the entangling proce-
dure are presented for the case of two uncorrelated 1/f 0.7 noises (blue lines) and for
the case of two fully correlated 1/f 0.7 noises (red lines). In noise-free experiment, one
expects that the only nonzero two-qubit correlations ⟨σ̂i ⊗ σ̂j⟩ = Tr{(σ̂i ⊗ σ̂j) ρ̂(τ)}
are

⟨σx ⊗ σz⟩ = ⟨σz ⊗ σx⟩ = − sin J12
τ

2
, (4.43)

⟨σz ⊗ 1⟩ = ⟨1⊗ σy⟩ = cos J12
τ

2
, (4.44)

⟨σy ⊗ σy⟩ = 1. (4.45)

Dynamical fluctuations of splittings Ji destroy these correlations and diminish their
amplitude with increasing duration τ . It is important to notice that fully correlated
noises always lead to decreased but non-zero value of ⟨σy⊗σy⟩

τ→∞
= 2Re ρinitial1−1,−11 =

1
2
,

and at the same time new two-qubit correlation ⟨σx ⊗ σx⟩
τ→∞
= 2Re ρinitial1−1,−11 = 1

2

is generated. Therefore, the spatial correlations of noises can have a visible impact
on the evolution of resulting state ρ̂(τ) and components of the Pauli set. Hence,
one can make use of this fact to estimate to what degree the noises were correlated
in the experiment. By comparison of experimental data (Fig. 3 in Ref. [66]) with
simulated results (Fig. 4.6) one may deduce that in the experiment [66] noises of
splittings J1 and J2 were uncorrelated.

4.6 Conclusions
I have theoretically analyzed the creation and evolution of entanglement of two
double quantum dot-based S-T0 qubits measured in Ref. [66] while taking into ac-
count realistic charge and nuclear noise affecting the qubits. I have confirmed that
it is possible to have nearly maximal coherence signal of a single S-T0 qubit in the
presence of quasistatic fluctuations of either exchange splitting J or magnetic-field
gradient ∆Bz by performing spin echo procedure on the qubit. Then, I have shown
that in the system of two S-T0 qubits quasistatic fluctuations of ∆Bz,i lead only to
partial decrease of overall efficiency of the entangling procedure due to imprecise
rotations of the qubits’ states.

Both quasistatic or dynamical fluctuations of exchange splittings J1, J2, and
two-qubit coupling J12 ∝ J1J2 lead to decay of overall efficiency of the entangling
procedure with increasing its duration τ . The level of correlation of charge noises,
as well as their exact functional form (i.e. value of parameter β characterizing the
1/fβ noise affecting J) translates in a distinctive manner into the shape of decay of
two-qubit entanglement as a function of procedure duration τ . Decay of the overall
efficiency of entangling procedure may arise as a result of the infidelity of single qubit
operations (due to dynamical fluctuations of splittings J1, J2) or may be caused by
infidelity of the entangling gate (due to fluctuations of two-qubit coupling J12).

Comparison of experimental data from Ref. [66] with calculations presented in
this chapter shows that the charge noises in the system of two S-T0 qubit investigated
there were uncorrelated. The main reason of the decreased level of entanglement
of the resulting two-qubit state is infidelity of single-qubit operations (as I have
obtained for 1/fβ noise with β = 0.7 consistent with the noise observed in other
experiments [151] on the samples similar to those used in Ref. [66]), whereas con-
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tribution of the non-ideal two-qubit gate is negligible in the considered entangling
procedure in the regime ∆Bz,i ≪ Ji. I predict that for J noises of more prominently
low-frequency character (i.e. 1/fβ with β closer to 2 than 1), the fluctuations of
the two-qubit interactions, which are not echoed by π pulses applied to the two
qubits separately, will become the main factor suppressing the maximal entangle-
ment achievable in the considered procedure. I have also identified qualitative fea-
tures of long-time behavior of two-qubit observables from the Pauli set that should
be visible when the exchange splitting noises for the two qubits are correlated.
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Chapter 5

Concluding Part

5.1 Summary
In this dissertation, the entanglement dynamics of two electron spin QD qubits has
been studied. The system of two qubits based on single electron spins localized
in semiconductor (III-V) QDs was considered in Chapters 2 and 3. In the former
chapter, the theoretical model of the system was presented as well as approxima-
tions to it, which allow to calculate and investigate the time evolution of two-qubit
entanglement for the case of free evolution as well as for the case of two-qubit spin
echo experiments. The equivalence of the quantum entanglement measure and the
quantum entanglement witnesses for the two qubits in the considered system has
been indicated. In the latter chapter, the way to retard the decay of two-qubit
entanglement in that system was presented. Surprisingly enough, it has been found
that even a small number n of successive quantum measurements performed on
two-qubit subsystem separated by a time period τ may significantly inhibit the en-
tanglement decay. In addition, fortunately, the strength of quantum measurement
can be progressively weaker as the number n of performed measurements grows,
without causing a noticeable reduction of the effect. In Chapter 4 the dynamical
production of the quantum entanglement of two S-T0 qubits was considered. The
influence of fluctuations (quasistatic or dynamical due to 1/fβ noise) of qubit Hamil-
tonian parameters on the efficiency of the entangling procedure was analyzed. The
estimates for time evolution of a single qubit components as well as for two-qubit
state have been obtained. The impact of possible correlation of dynamical noises
affecting the qubits’ energy splittings has also been discussed.

The essentially new knowledge that has been established in this dissertation is
summarized in the conclusions of each chapter (pp. 74, 89, 113), and for convenience
of the reader, is also formulated below in the form of concise statements to be
defended.

5.2 Statements to Be Defended
From the analysis presented in the main chapters 3–5 one can draw several state-
ments that, to my best knowledge, are original and have brought a value to the
literature of entanglement studies.

In Chapter 2 it has been shown that the decay of entanglement of two spin QD
qubits plotted as a function of time using units of two-dot T ∗

2 has a universal form,



116 5: Concluding Part

i.e. it does not depend on exact values of hyperfine interaction couplings, exact
number of nuclear spins in QDs, and is the same even for nonequal QDs. At first
sight, this finding looks like a purely technical observation, but it is extremely useful
while comparing, for example, the results obtained for systems of different sizes. One
should remember that it is not possible to compute precisely the dynamics of two
electron spins taking into account the real number of nuclear spins without making
any approximation. However, by using units of two-dot T ∗

2 it is possible to directly
confront results obtained within different approaches and for different parameters
of the system, or to compare them with results of direct numerical computations of
the time evolution of small systems (with a few nuclear spins in a QD).

While considering various possible states of the nuclear spin bath, it has been
shown that in the case of narrowed and correlated nuclear bath states, entanglement
decays in a similar manner, i.e. the level of entanglement (locally averaged over fast
oscillations) obtained for a narrowed state overlaps with that for the corresponding
correlated state. Hence, the calculation of entanglement decay for narrowed nu-
clear state, which requires less numeric computations, gives, in principle, enough
information about the entanglement dynamics of two electron spins.

It has been demonstrated that there exists a minimal nonzero value of the
strength of magnetic field which is necessary to perform successfully the two-spin
echo procedure in order to rephase the qubits back and to regain some entanglement.
This limit is approximately of the value of the typical Overhauser field of a QD. It
is worth to pay attention here to the fact that it is highly instructive to express the
strength of the external magnetic field in inverse units of two-dot T ∗

2 . By doing so,
it becomes clear what strength of magnetic field is low (such that corresponds to
Ω̃ < 1) or moderate (when Ω is about a few inverse T ∗

2 ).
It has been demonstrated that entanglement of two electron spins interacting

with nuclear spin baths can be detected and quantified faithfully by measuring an
entanglement witness (specifically, projection on the initial entangled state) or by
performing a quantum teleportation protocol (by average fidelity of that procedure).
In that system, the level of entanglement turns out to be related uniquely with the
above-mentioned quantities, which are a lot handy to measure compared to the full
tomography of a two-qubit state.

In Chapter 3 it has been pointed out that a manipulation procedure consisting
of free evolution part and quantum measurement with postselection of two-qubit
state may retard the decay of two-qubit entanglement for specific combinations of
its parameters, namely, the duration τ of free evolution, the number n of performed
quantum measurements and their strength k. It has been shown that, despite the
indeterminacy involved in the procedure (i.e. not each run of the procedure will
produce the desired state ρ̂n(t)), the estimated probability of success may be pretty
large (about 10%) for relatively long sequences (n ≈ 10). It has been also demon-
strated that application of long sequences gives a twofold profit: on one hand, the
larger n, the more pronounce effect of retardation, and on the other hand, the larger
n, the weaker quantum measurement (the lower k) can be used in the manipulation
procedure to produce a nearly maximal effect.

In Chapter 4 it has been shown that in the system of two S-T0 qubits, operated in
a regime when energy associated with the magnetic field gradient ∆Bz is an order of
magnitude smaller than the exchange energy J between singlet and triplet states, the
efficiency of the entangling procedure decreases with increasing its duration τ due
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to either quasistatic or dynamical fluctuations of exchange splittings J1, J2 and two-
qubit coupling J12. In the case of dynamical fluctuations due to charge noise of 1/fβ

type, the leading factor of decay switches from infidelities of single-qubit operations
(originated from fluctuating J1, J2) when β < 1 to infidelity of the entangling gate
(originated from fluctuations of J12) when β > 1. It has also been demonstrated
that the level of correlation of the charge noises which affect the qubits is reflected
in the time evolution of two-qubit correlations, and hence, it may be deduced from
the corresponding experimental data whether the charge noise originates from a
common source for both qubits or qubits are affected by their local charge noises.
The analytical expression of the two-qubit density operator calculated taking into
account the 1/fβ noise of exchange splittings J1, J2 allows to establish a limit from
above on the possible level of entanglement of two-qubit state produced by execution
of the entangling procedure.
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Appendix

Uniform-Coupling Approximation to the Central Spin
Problem

The uniform-coupling model allows to calculate the time evolution of the central
spin due to the fact that the dynamics occur in the uncoupled subspaces spanned
by two states, |σ, j,m⟩ and |σ̄, j,m+ σ⟩ (where σ=±1 is the σ̂z eigenvalue for the
electron spin) [1]:

e−iĤt |σ, j,m⟩ ≡ ajmσ(t) |σ, j,m⟩+ bjmσ(t) |σ̄, j,m+ σ⟩ . (5.1)

The time-dependent coefficients ajmσ(t) and bjmσ(t) read as follows [125]:

ajmσ(t) = e−iEmσt

(
cos vjmσt/2− i

zmσ

vjmσ

sin vjmσt/2

)
, (5.2)

bjmσ(t) = −ie−iEmσt
xjmσ

vjmσ

sin vjmσt/2. (5.3)

where several auxiliary quantities were used

Emσ :=
1

2

(
(2m+ σ)ω −A/2N

)
, (5.4)

xjmσ := A
√
j(j + 1)−m(m+ σ)/N, (5.5)

zmσ := σ
(
Ω− ω +A(m+ σ/2)/N

)
, (5.6)

vjmσ :=
√
x2jmσ + z2mσ, (5.7)

The evolution of an electron spin coupled to the nuclear spins is then described by
the functions Kσσ′

a (t) and Kσ
b (t) defined in Sec. 2.3:

Kσσ′

a (t) =
1

Z

∑
jm

njpmajmσ(t)a
∗
jmσ′(t), (5.8)

Kσ
b (t) =

1

Z

∑
jm

njpm|bjmσ̄(t)|2, (5.9)

where Z is the normalization factor, pm are the appropriate weights, and nj are
the degeneracies of subspaces with given j. When the nuclear spin J is in a high-
temperature state one has Z = (2J + 1)N and pm = 1, whereas for fully narrowed
nuclear state with hz=m0A/N one has pm=δmm0 and Z=

∑
j≥|m0| nj.
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The degeneracy factor nj is given for nuclear bath consisting of N spins 1
2

by [236]

nj =
N !

(N/2− j)!)(N/2 + j)!

2j + 1

N/2 + j + 1
(5.10)

≈ 2N
4(2j + 1)√
2πN3/2

e−2j2/N , (5.11)

where in the second expression it is assumed N≫1 and j≪N/2. In high magnetic
fields, Ω≫σh ∼ A/

√
N , with nuclear spin bath in a high-temperature state one has

zjmσ

vjmσ

≈ σ

(
1− σ2

h

2Ω2
mσ

)
, (5.12)

where Ωmσ := Ω− ω +A(m+ σ/2)/N≈Ω. The approximation of Zeeman splitting
Ωmσ is based on the observation that according to Eq. (5.11) the sum in Eqs. (5.8-
5.9) is dominated by terms with j ≲

√
N , which also limits the relevant values of

m. The quantity vjmσ can be also approximated as

vjmσ ≈ Ωmσ +
A2

2NΩmσ

, (5.13)

where the second term can be dropped on time scale t≪Ω/σ2
h. Finally, combining

altogether one obtains

Kσσ̄
a (t) ≈ e−iσΩt

2N

∑
jm

nje−iσAmt/N ≈ e−iσΩte−(t/T ∗
2,Q)2 , (5.14)

where the sum over j and m values is approximated [127] by an integral
∫
P (m)dm

with P (m) ∝ exp(−m2/2σ2
h) where σh is given in Eq. (1.23), and the resulting

single-dot T ∗
2,Q time is given by

√
2/σh. It should be noted that a partial narrowing

of the nuclear distribution (i.e. elimination of certain values of m values the sums),
resulting in a diminished value of σh, leads to the above formula for Kσσ̄

a (t), only
with increased T ∗

2,Q, as long as the time scale of interest t≲T ∗
2,Q≪Ω/σ2

h.
In such a case, an approximation forKσ

b (t) can be obtained by using the following
substitution

x2jmσ

v2jmσ

≈ A2

N2Ω2

(
j(j + 1)−m(m+ σ)

)
, (5.15)

in Eq. (5.3), which is accurate in the leading order of σ2/Ω2. By that means one
obtains

Kσ
b (t) ≈

1

2N

∑
j,m

nj
A2

N2Ω2

(
j(j + 1)−m(m+ σ)

)
sin2 vjmσt/2. (5.16)

Using vjmσ ≈Ωmσ (valid at t≪T ∗
2Ω/σ) it is clear that the oscillatory terms in the

above equation average out to 1/2 for t≫T ∗
2 . At these long times, using the relation

[125]
1

2N

∑
j,m

nj

(
j(j + 1)−m(m+ σ)

)
= N/2, (5.17)

one obtains
Kσ

b (t≫T ∗
2,Q) ≈

A2

4NΩ2
=

2

Ω̃2
Q

, (5.18)
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where Ω̃Q :=ΩT ∗
2,Q.

An analogous analytical analysis is applicable for the case of fully narrowed
nuclear spin bath. Introducing Zeeman spitting dependent on m, Ωm := Ω − ω +
Am/N one has the following approximate relations:

zmσ ≈ σΩm, (5.19)

zmσ

vjmσ

≈ sgn(Ωm)

(
1−

x2jmσ

2Ω2
m

)
, (5.20)

xjmσ

vjmσ

≈ xjmσ

|Ωm|
, (5.21)

which lead to

Kσσ̄
a (t) ≈ e−iσωt

Zm

∑
j≥|m|

nje−
i
2
sgn(zmσ)(vjmσ+vjmσ̄)t

×
∏
σ=±

(
1 +

x2jmσ

4Ω2
m

(eisgn(zmσ)vjmσt − 1)

)
. (5.22)

In the above formula, the terms in the second line are responsible for the fast os-
cillations visible in the entanglement decay in Fig. 2.2 (note that the concurrence
of a decohered Bell state, when not being very small, is proportional to one of the
two-qubit coherences, given by the product of two Kσσ̄

a (t) functions). The estimate
of the amplitude of these oscillations shows that it is ≈ 8/Ω̃2, where Ω̃ :=ΩT ∗

2 , and
the two-dot T ∗

2 time is defined in Eq. (2.44).
The first term in Eq. (5.22) gives the envelope of the decay. Noticing that

vjmσ ≈ |Ωm| + x2jmσ/2|Ωm|, one obtains the following approximation for Kσσ̄a(t)
functions

Kσσ̄
a (t) ≈ e−iσ(Ω+Am/N)t 1

Zm

∑
j≥|m|

nj

× exp

(
−iσ A2

2N2Ωm

(
j(j + 1)−m2

)
t

)
. (5.23)

In Ref. [125] it was shown how Eq. (2.56) follows from the above formula when
m=0. It should be stressed that with the above approximation for vjmσ, the time
scale of validity of this result is t≪ 4|Ωm|3/x4jmσ ≈ 4(N/A) · (Ωm/A) · δ−2

m , where
δm :=A/

√
NΩm, and δm ≪ 1 is the necessary condition [111, 165] for applicability

of the effective Hamiltonian approximation leading to Eq. (2.56). This time scale
exceeds N/A (the time on which the uniform coupling model is expected to be
applicable at all) when δm≪ (2/N)1/6, which coincides with δm≪ 1 when N ≥ 106.
Lastly, it is worth to note that an approximate expression for Kσ

b (t) can be derived
analogously to the one from Eq. (5.16). Because of the lack of summation over
m the oscillations in Kσ

b (t) cancel out at longer times, for t≫ τQ where τQ is the
characteristic decay time scale of Kσσ̄

a (t) given in Eq. (2.57). The value at which
Kσ

b (t) stabilizes is also given by Eq. (5.18), only with Ω replaced by Ωm.
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Components of Single S-T0 Qubit as Functions of Duration τ

In the ideal case, FID signals (i.e. average ⟨σ̂FID
i (τ)⟩ components of S-T0 qubit)

evolve as follows.

⟨σ̂FID
x (τ)⟩ := ⟨−y|eiĤτ σ̂xe

−iĤτ |−y⟩

= ⟨−y|

(
cos
(τ
2

√
∆B2

z + J2
)
1

+ i sin
(τ
2

√
∆B2

z + J2
) ∆Bz√

∆B2
z + J2

σ̂x

+ i sin
(τ
2

√
∆B2

z + J2
) J√

∆B2
z + J2

σ̂z

)

× σ̂x

(
cos
(τ
2

√
∆B2

z + J2
)
1

− i sin
(τ
2

√
∆B2

z + J2
) ∆Bz√

∆B2
z + J2

σ̂x

− i sin
(τ
2

√
∆B2

z + J2
) J√

∆B2
z + J2

σ̂z

)
|−y⟩

=
J√

∆B2
z + J2

sin
(√

∆B2
z + J2τ

)
.

⟨σ̂FID
y (τ)⟩ = − cos

[√
∆B2

z + J2τ
]

≈ − cos
[(

J +
∆B2

z

2J

)
τ
]
,

the approximation is good for τ ≪ 8J3

∆B4
z
.

⟨σ̂FID
z (τ)⟩ = − ∆Bz√

∆B2
z + J2

sin
(√

∆B2
z + J2τ

)
.

In the ideal case, SE signals (i.e. average ⟨σ̂SE
i (τ)⟩ components of S-T0 qubit)

evolve as follows.

⟨σ̂SE
x (τ)⟩ = ⟨−y|eiĤ

τ
2 (iσ̂x)e

iĤ τ
2 σ̂xe

−iĤ τ
2 (−iσ̂x)e−iĤ τ

2 |−y⟩

=
8∆B2

zJ

(∆B2
z + J2)3/2

cos
(1
4

√
∆B2

z + J2τ
)

× sin2
(1
4

√
∆B2

z + J2τ
)
.

⟨σ̂SE
y (τ)⟩ = 1

∆B2
z + J2

(
J2 +∆B2

z cos
(√

∆B2
z + J2τ

))
.
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⟨σ̂SE
z (τ)⟩ = ∆Bz

(∆B2
z + J2)3/2

[
2J2 sin2

(
1

2

√
∆B2

z + J2τ

)
+ ∆B2

z sin
(√

∆B2
z + J2τ

)]
.

Assuming that J̄ ≫ ∆Bz, σJ , after averaging over quasistatic fluctuations of the
parameter ∆Bz or J one obtains the following approximate expressions for y qubit
component during SE.

⟨⟨σSE
y (τ)⟩⟩∆Bz ≈

J2

J2 +∆Bz
2

+
1

J2 +∆Bz
2 exp

(
−

∆Bz
2
σ2
∆Bz

τ 2

2(J2 + (σ2
∆Bz

τ)2)

)

×

[
J3/2(J(∆Bz

2
+ σ2

∆Bz
) + iσ4

∆Bz
τ)

2(J + iσ2
∆Bz

τ)5/2

× exp

(
−iJτ

∆Bz
2
+ 2J2 + 2(σ2

∆Bz
τ)2

2(J2 + (σ2
∆Bz

τ)2)

)
+ c.c.

]
.

⟨⟨σSE
y (τ)⟩⟩J ≈ J̄2 + σ2

J

J̄2 +∆B2
z

+
∆B2

z

J̄2 +∆B2
z

exp

(
−σ

2
Jτ

2

2

)
cos
(
J̄τ
)
.

S-T0 Qubit Attenuation Factors Derived for Dynamically Fluc-
tuating Splitting

I present here the calculation of the attenuation factors χFID(τ) and χSE(τ) that
account for the effect of dynamically fluctuating splittings J1, J2.
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The attenuation factor χFID(τ) is calculated as follows.

χFID(τ) =

τ∫
0

dt1

τ∫
0

dt2⟨δJ(t1)δJ(t2)⟩fFID(t1)fFID(t2)

=

∞∫
−∞

dt1

∞∫
−∞

dt2

∞∫
−∞

dω

2π
e−iω(t1−t2)S(ω)

×
∞∫

−∞

dω1

2π
f̃FID(ω1)e

−iω1t1

∞∫
−∞

dω2

2π
f̃FID(ω2)e

−iω2t2

=

∞∫
−∞

dω1

∞∫
−∞

dω2

∞∫
−∞

dω

2π
δ(ω + ω1)δ(ω − ω2)

× f̃FID(ω1)f̃FID(ω2)S(ω)

=

∞∫
−∞

dω

2π
f̃FID(−ω)f̃FID(ω)S(ω) =

∞∫
−∞

dω

2π

∣∣∣f̃FID(ω)∣∣∣2 S(ω)
=

∞∫
−∞

dω

2π

2FFID(ωτ)

ω2
S(ω) = 2

∞∫
0

dω

π

FFID(ωτ)

ω2
S(ω).

Using the explicit analytical expressions for the filter function, FFID(ωτ) =
2 sin2 ωτ

2
, and the spectral density of noise, S(ω) = A

ωβ , where A is a constant
corresponding to the power of the noise, one obtains the following expression for the
attenuation factor

χFID(τ) =
4A

π

∞∫
0

dω sin2 ωτ

2

1

ω2+β
,

which for β = 0.7 can be evaluated giving finally:

χFID(τ) =
2A

π
cos

(
3π

20

)
Γ (−1.7) τ 1.7 ≈ 2.24

2A

π
τ 1.7,

as the definite integral can be calculated analytically
∞∫
0

dω sin2 ωτ

2

1

ω2+0.7
=

1

2
cos

(
3π

20

)
Γ (−1.7) τ 1.7,

where Γ(x) is the gamma function.
Similarly, the attenuation factor χSE(τ) reads as follows.

χSE(τ) =

τ∫
0

dt1

τ∫
0

dt2⟨δJ(t1)δJ(t2)⟩fSE(t1)fSE(t2)

= 2

∞∫
0

dω

π

FSE(ωτ)

ω2
S(ω).
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Using the explicit analytical expressions for the filter function, FSE(ωτ) = 8 sin4 ωτ
4

,
and the spectral density of noise, S(ω) = A

ωβ , one obtains the following expression
for the attenuation factor

χSE(τ) =
16A

π

∞∫
0

dω sin4 ωτ

4

1

ω2+β
,

which for β = 0.7 can be evaluated giving finally:

χSE(τ) =
2A

π

(
20.3 − 1

)
cos

(
3π

20

)
Γ (−1.7) τ 1.7 ≈ 0.52

2A

π
τ 1.7,

as the definite integral can be calculated analytically

∞∫
0

dω sin4 ωτ

4

1

ω2+0.7
=

1

8

(
20.3 − 1

)
cos

(
3π

20

)
Γ (−1.7) τ 1.7.

The attenuation factor χSE(τ) for the noise with β = 2.0 is χSE(τ) =
A
12
τ 3 as the

following definite integral can be calculated analytically
∫∞
0

dω sin4 ωτ
4

1
ω2+2.0 = π

192
τ 3.
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2.1 Concurrence decay for two electron spins interacting with uncorre-
lated thermal baths. The electron spins are initially in one of the Bell
states, and the dynamics of their reduced density operator is calcu-
lated using the UC approach. Time is in units of two-dot T ∗

2 defined
in Eq. (2.44), and the dimensionless Zeeman splitting is Ω̃ := ΩT ∗

2 .
The result for Ω̃ =∞ (which in fact is a value large enough for the
changes in C(t̃) upon increasing it to be invisible in the Figure) is the
same as the result of calculation using the pure dephasing approxima-
tion from Eq. (2.47). Lines and symbols correspond to two distinct
sets of NA and NB. The agreement of the results corresponding to the
same values of Ω̃ illustrates the universal character of the C(t̃) behav-
ior. Black lines show results for the initial Werner state with p=3/4.
In the inset we show the dependence of the ESD time t̃D := tD/T

∗
2

on Ω̃: blue solid line is the exact result for Bell states, dashed line
is the approximate large-field result from Eq. (2.53), and black solid
line is the exact result for Werner state with p= 3/4. The figure is
reproduced from Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Concurrence decay for two electron spins initialized in one of the Bell
states interacting with two separate uncorrelated nuclear baths in nar-
rowed states (each bath has hzQ=0). The calculations are performed
using the UC approach (so that hzQ=0 corresponds to mQ=0). Time
is in units of two-dot T ∗

2 defined in Eq. (2.44), and the dimensionless
Zeeman splitting is Ω̃ :=ΩT ∗

2 . Solid lines correspond to the case of two
identical QDs (NA=NB =1000), dashed lines correspond to the case
of two strongly asymmetric QDs (NA= 2NB =1000), symbols corre-
spond to the case of two identical QDs consisting of realistic number
of nuclear spins (NA= NB =106), and the dotted line is the calcula-
tion in the pure dephasing approximation using Eq. (2.56) for Ω̃=10.
Note that symbols are in full agreement with solid lines, i.e. the results
for two identical QDs are independent of the sizes of these QDs in the
domain of applicability of the UC approach. Dashed lines are very
close to the solid ones (the difference between the two is most visible
for Ω̃ = 5) showing that results obtained for QDs of different sizes,
are very similar one to another when expressed in the dimensionless
units used here. The figure is reproduced from Ref. [1]. . . . . . . . 63
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2.3 Time of final entanglement death for Bell states (the results are the
same for all the states) and Werner states (see Eq. (2.45)) with p=2/3
and 3/4. The nuclear baths for the two dots are uncorrelated, and
each is narrowed to the state of hz = 0. Calculation is done within
the UC model with NA = NB = 105. Time is in units of two-dot
T ∗
2 defined in Eq. (2.44), and the dimensionless Zeeman splitting is

Ω̃ :=ΩT ∗
2 . The figure is reproduced from Ref. [1]. . . . . . . . . . . . 66

2.4 Decay of concurrence of |Φ±⟩ and |Ψ±⟩ Bell states interacting with
correlated nuclear baths in a state of strongly narrowed distribution of
∆hz :=hzA−hzB (taken to be ∆hz=0 here). Calculations are performed
using the UC approach. The |Φ±⟩ states (solid lines) decay just like in
the thermal bath case (compare with Fig. 2.1), while the decay of |Ψ±⟩
states (dashed lines) is very similar to the decay observed in the case
of separate narrowing of each of the nuclear baths (compare with
Fig. 2.2), only the fast oscillations of C(t) are absent for t≳T ∗

2 . Time
is in units of two-spin T ∗

2 defined in Eq. (2.44), and the dimensionless
Zeeman splitting is Ω̃ :=ΩT ∗

2 . The figure is reproduced from Ref. [1]. 66
2.5 Typical distributions of normalized weights for individual (mA,mB)-

pairs for two nuclear spin baths in correlated state ∆hz :=hzA−hzB⇔
∆p := pA − pB = ∆hz

AJ
⇒ mB = (mA/NAJ − ∆p)NBJ in the case

of two identical QDs (open symbols) and in the case of two strongly
asymmetric QDs (filled symbols). According to the formula dis-
cussed in Sec. 2.5.3.2, the maximum of the distribution occurs at
m̄A=∆pNANBJ/(NA +NB), which for ∆p=0.4 gives 100 (662

3
≈67)

for symmetric (asymmetric) QDs and parameters used here. The nor-
malization is

∑
mA

w(mA; ∆m) = 1. The figure is reproduced from
Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.6 Distributions of weights for (mA,mB)-pairs for two nuclear spin baths
of spins 1

2
(upper panel) and 3

2
(lower panel) in correlated state ∆hz :=

hzA−hzB ⇔∆p := pA−pB = ∆hz

AJ
⇒mB = (mA/NAJ − ∆p)NBJ in the

case of two identical QDs (NA = NB = 100). Blue dots represent
weights w(mA,mB) calculated exactly for ∆m = 40 which gives bath
polarization ∆p = ∆m

NJ
= 0.8 for spins 1

2
and ≈ 0.27 for spins 3

2
. Green

asterisks represent weights w(mA,mB) calculated exactly (and shifted
by 20 to the right) for ∆m = 0 which gives bath polarization 0 for
spins 1

2
and 3

2
. The solid red line represents the approximated formula

for weights w(mA; ∆m) = e−
(m−∆m

2 )
2

2σ2 , where σ =
√

1
6
NJ(J + 1). . . 68

2.7 Concurrence decay for two electron spins interacting with two uncor-
related and correlated nuclear baths in narrowed states. The spins
are initially in |Ψ+⟩ or |Ψ−⟩ Bell state and the dynamics of their re-
duced density operator is calculated using the UC approach. Dashed
lines correspond to the case of separately narrowed baths (calcu-
lated for bath sizes NA = NB = 105), while solid lines correspond
to the case of correlated state of the baths (calculated for bath sizes
NA=NB=1000) with ∆hz=0. Time is in units of two-dot T ∗

2 defined
in Eq. (2.44), and the dimensionless Zeeman splitting is Ω̃ := ΩT ∗

2 .
The figure is reproduced from Ref. [1]. . . . . . . . . . . . . . . . . . 69
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2.8 Normalized absolute values of single-qubit and two-qubit coherences
(for initial |Ψ±⟩ state) calculated for two dots with NA=NB = 1000
in fields Ω̃ = 3 (in blue) and Ω̃ = 20 (in red). Dashed and dot-dashed
lines correspond to coherences of qubits A and B, respectively, calcu-
lated using Eq. (2.58) assuming pA=0.2 and pB =−0.2. Since hzQ is
enhancing (suppressing) the total qubit splitting for dot A (B), the
decays of these coherences are visibly distinct, especially for lower
value of external field. Solid lines correspond to the absolute value
of K+−,−+(t) =KA,+−

a (t) KB,−+
a (t) function from Eq. (2.62), i.e. the

two-qubit coherence ρ+−,−+(t) calculated assuming uncorrelated nar-
rowed baths. Symbols correspond to the absolute value of ρ+−,−+(t)
calculated with the UC approach for correlated baths narrowed to
∆p = 0.4. The agreement of the latter with the solid lines is very
good for t̃≳1 (at shorter times the UC solution exhibits oscillations,
see solid lines in Fig. 2.7). The figure is reproduced from Ref. [1]. . . 69

2.9 Concurrence as a function of time in the presence of echo π pulse at
t̃=4 for different values of magnetic field, calculated for an initial Bell
state. The calculation is performed within the UC model assuming
a single nuclear species, on time scale of t≪ ωα (so that the values
of ωα are irrelevant and in the calculation they are assumed to be
zero). Note that for Ω̃=0 and 1 the entanglement does not revive at
the echo time of t̃=8. For larger Ω̃ the entanglement is indeed revived
by the echo procedure and its maximal value grows with increasing
Ω̃. Inset: absolute value of normalized two-qubit coherence vs. en-
tanglement at the time of maximum of the echo signal as a function
of Ω̃. At lowest magnetic fields, the amount of recovered coherence is
not large enough to lead to a recovery of entanglement. The figure is
reproduced from Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . 70

2.10 Concurrence at the maximum of echo-induced revival as a function
of total echo sequence time for various magnetic fields calculated using
the UC approach. The electron spins are initially in one of the Bell
states and interact with two separate baths consisting of a single
nuclear species. The figure is reproduced from Ref. [1]. . . . . . . . . 70

2.11 Concurrence C(t̃), projection on singlet PS(t̃), and averaged fidelity
of teleportation F̄ (t̃) for two electron spins initially being in a singlet
state |Ψ−⟩ for the case of interaction with two separate nuclear spin
baths in high-temperature states calculated using the UC approach
at Ω̃=5. The vertical dotted line marks the time at which the state
becomes disentangled, while the horizontal dotted lines at 0.5 and
2/3 correspond to values at which PS(t̃) and F̄ (t̃), respectively, cease
to indicate the presence of entanglement. Time is in units of two-dot
T ∗
2 defined in Eq. (2.44), and the dimensionless Zeeman splitting is

Ω̃ :=ΩT ∗
2 . The figure is reproduced from Ref. [1]. . . . . . . . . . . . 73

2.12 Concurrence C(t̃), projection on |Φ+⟩ Bell state P|Φ+⟩(t̃), and aver-
aged fidelity of teleportation F̄ (t̃) for two electron spins initially being
in |Φ+⟩ state for the case of interaction with two separate nuclear spin
baths in thermal states calculated using the UC approach for Ω̃=10.
The figure is reproduced from Ref. [1]. . . . . . . . . . 73
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2.13 The same as above, only for narrowed state of A and B baths (each
having hzQ=0). The figure is reproduced from Ref. [1]. . . . . . . . . 73

3.1 Schematic representation of the proposed manipulation sequence with
quantum measurements and postselection of the two-qubit state. The
procedure begins from initialization of the system in the state ρ̂0(0),
which contains maximally entangled two-qubit state. Next, free evo-
lution is allowed for a time period τ , at the end of which the state
ρ̂0(τ) is obtained. System being in that state is measured (specifi-
cally, the projection of the actual two-qubit state on the initial one is
performed), that produces one of two possible outcomes. The “yes”
outcome, referred to as ρ̂1(0) state, is a useful state for possible fur-
ther repetition of the described manipulation cycle of free evolution
followed by the measurement or for immediate use as a quantum re-
source. When “no” result is obtained, i.e. the run of the procedure
has not delivered the desired quantum state, the run is interrupted. . 82

3.2 Concurrence of two-qubit state ρ̂2q(t) and negativity calculated for
the system state ρ̂n(t) divided into two parts, TESS and NSEs, as
functions of time t after the last projective measurement (PM). NSEs
consist of N1 = N2 = 5 uniformly coupled spins 1

2
. The system is in

moderate magnetic field, Ω = 5
[

ℏ
T ∗
2

]
. The projective measurements

are performed after the period of system evolution τ = 2T ∗
2 . . . . . . 84

3.3 Concurrence calculated for ρ̂2q(t = 2T ∗
2 ) as a function of number n

of performed projective measurements and period τ between them.
NSEs consist of N1 = N2 = 5 uniformly coupled spins 1

2
. The system

is in moderate magnetic field, Ω = 5
[

ℏ
T ∗
2

]
. . . . . . . . . . . . . . . . 85

3.4 (a) Probability to obtain the state ρ̂n(0) as a function of number n
of performed projective measurements and period τ between them.
(b), (c) Cross-sections of the map (a): Probability to obtain the state
ρ̂n(0) as a function of number n of performed projective measurements
(b) and as a function of period τ between projective measurements
(c). NSEs consist of N1 = N2 = 5 uniformly coupled spins 1

2
. The

system is in moderate magnetic field, Ω = 5
[

ℏ
T ∗
2

]
. . . . . . . . . . . . 86

3.5 (a) Concurrence of the two-qubit state ρ̂2q(t) calculated at t = 2T ∗
2 as

a function of number n of quantum measurements (QM) performed
with period τ = 2T ∗

2 and their strength k. (b) Cross-section of the
map (a): Concurrence of the two-qubit state ρ̂2q(t) calculated at t =
2T ∗

2 as a function of strength k of quantum measurements performed
with period τ = 2T ∗

2 . NSEs consist of N1 = N2 = 5 spins 1
2
. The

system is in moderate magnetic field, Ω = 5
[

ℏ
T ∗
2

]
. . . . . . . . . . . . 87
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3.6 Concurrence of the two-qubit state ρ̂2q(t) as a function of time t
after the last projective measurement (PM): top panel – no PM,
middle panel – 1 PM, bottom panel – 20 PMs. Solid and dashed
lines correspond to system evolutions under the hyperfine Hamilto-
nian with separate nuclear spin environments, whereas dash dotted
and dash double-dotted lines correspond to the system evolutions
when each electron spin is also coupled to the nuclear spin environ-
ment of the another electron spin at the level of 10% of the coupling
to nuclear spins from its own QD. Dashed and dash double-dotted
lines shows the concurrence of the system in which the direct in-
teraction between electron spins is present

(
at the level of 10% of

the total coupling between the electron spin and the nuclear spins,
A0 = 0.1

∑N
i=1A

(1)
i = 0.1

∑N
i=1A

(2)
i

)
. NSEs consist of N1 = N2 = 5

spins 1
2
. The system is in moderate magnetic field, Ω = 5

[
ℏ
T ∗
2

]
. The

projective measurements are performed after the period of system
evolution τ = 2T ∗

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 FID and SE signals of a single S-T0 qubit for the case of 1/fβ noise in
exchange splitting J , with fluctuations in ∆Bz neglected. The power
of the noise was chosen to be such that ensures decay of SE signal
as observed in the experiment [151] (such a noise power that leads
to half-decay of SE signal in 1.5 µs for J ≈ 1 µeV). Note that the
improvement in coherence time due to echo relative to FID is larger
when β is larger, i.e. when there is more noise power at the lowest
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 The temporal control of the exchange splittings J1(t), J2(t) during
execution of the entangling procedure when the magnetic field gradi-
ents ∆Bz,1 ̸= ∆Bz,2. Thin vertical blue dashed and red dash-dotted
lines are positioned at the middle of the durations of π pulses for
qubit 1 and 2, respectively. . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Top panel: Concurrence of the two-qubit state generated in the ide-
alized realization of the entangling procedure described in Sec. 4.3
(∆Bz,i are on during the qubit rotations only, the rotations assumed
to be perfect) plotted as red dashed line, and the same for a more
realistic procedure considered in Sec. 4.4 (∆Bz,i are always on, albeit
none of the parameters of the Hamiltonian are fluctuating) plotted as
a solid blue line. The parameters are close to those from experiment
[66]: J1 = J2 = 1.2 µeV (with corresponding frequency Ji/h = 300
MHz), J12 = 1.29 · 10−2 µeV, ∆Bz,1 = ∆Bz,2 = 0.12 µeV. Bottom
panel: zoomed in region of the top panel in the vicinity of τ ≈ 2 π

J12
,

red dotted line is the concurrence obtained in the idealized case, blue
solid line is the concurrence obtained in a more realistic case with
constant parameters Ji, J12, ∆Bz,i, and blue green dash-dotted line
is the concurrence obtained in the idealized case, but with value of
J12 from the latter case. . . . . . . . . . . . . . . . . . . . . . . . . . 104
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4.4 Concurrence of the two-qubit state |τ⟩ obtained in (a) idealized re-
alization of entangling procedure (the same as red dashed line in
Fig. 4.3), (b) entangling procedure with always-on constant ∆Bz,i

(the same as blue solid line in Fig. 4.3), (c) entangling procedure in
which magnetic field gradients ∆Bz,i are constant during a single run
of entangling procedure but fluctuate quasistatically from one run to
another (average over 10,000 realizations, ∆Bz,i ∼ N (∆Bz,i, σ∆Bz,i

),
σ∆Bz,i

= 15%∆Bz,i), here rotations around x axis artificially kept
perfect (i.e. precisely π

2
at the beginning and π in the middle of the

procedure), (d) the same as (c) but with imprecise rotations around x
axis which arise as a result of mismatch of the rotation time and the
actual value of ∆Bz,i. All results are obtained under the assumption
that S-T0 splittings Ji do not fluctuate and are switched on when
needed (as shown in Fig. 4.2). Values of parameters are the same as
in Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Concurrence of the two-qubit state ⟨ρ̂(τ)⟩ as a function of the duration
τ of the entanglement generation procedure. Lines are results for the
case in which fluctuations of Ji and J12 are taken into account, while
results in which the fluctuations of J12 were artificially turned off are
shown with open symbols. Top panel: The case of quasistatically
fluctuating J1, J2 with standard deviations σi = 0.15J̄i (Eq. (4.31)).
Middle and bottom panels: The cases of dynamically fluctuating J1,
J2, and hence J12, due to 1/fβ noise that is uncorrelated (blue solid
line) or perfectly correlated (red dashed lines) for the two qubits. The
power of the noise affecting each qubit was chosen to be such that
ensures the time scale of decay of single-qubit SE signal like in the
experiment [151]: S-T0 qubit having J=1.16 µeV shows TSE ≈ 1.6 µs,
S-T0 qubit having J=1.32 µeV shows TSE ≈ 1.4 µs. . . . . . . . . . 110

4.6 Pauli set for the case of 1/f 0.7 noise. Blue lines show calculated Pauli
set for two independent noises of J1(t), J2(t), whereas red lines show
calculated Pauli set for correlated noises J1(t) = J2(t). In the top
panel, for the case of independent noises the following measures are
shown: blue solid line is concurrence of ⟨ρ̂(τ)⟩, brown dashed line
is fidelity ⟨ψo|⟨ρ̂(τ)⟩|ψo⟩ (see Eq. (4.27)), purple dash-dotted line is
fidelity ⟨ψe|⟨ρ̂(τ)⟩|ψe⟩ (see Eq. (4.28)), turquoise dotted line is fidelity
⟨ψ(τ)|⟨ρ̂(τ)⟩|ψ(τ)⟩ (see Eq. (4.26); and red dotted line is concurrence
calculated for correlated noises J1(t) = J2(t). The power of the noise
affecting each qubit was chosen to be such that ensures the time scale
of decay of single-qubit SE signal like in the experiment [151]: S-T0
qubit having J = 1.16 µeV shows TSE ≈ 1.6 µs, S-T0 qubit having
J = 1.32 µeV shows TSE ≈ 1.4 µs. In the case of fully correlated
noises J1(t) = J2(t), the higher power of the noise has been chosen
for both qubits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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